
Suite++®
THE PLUM HALL VALIDATION SUITE FOR

THE STANDARD C++ LANGUAGE

VERSION 2025a August 2025
Your Feedback is Valued

Please feel free to contact me with any issues, errors, omissions, thoughts, … concerning the test cases and
infrastructure in the Plum Hall test suites. The software is constantly updated with new test cases and
infrastructure improvements. A new distribution is released in the month of August every year. Please
contact me by email: dougteeple at plumhall2b.com.

New in xvs25a:

This release has new test cases proposed for C++26 features.

There are 421 new test cases, documented in “coverage-c26.html”, in multiple directories predominantly in
t26a.dir. The new test cases predominantly pertain to the proposed C++26 standards. The total number of
test cases is now more than 7500, including positive, negative and undefined cases.

Version ISO Document __STDC_VERSION__ Comments

CXX11 ISO/IEC 14882:2011 201103L C++0x
CXX14 ISO/IEC 14882:2014 201402L C++1y
CXX17 ISO/IEC 14882:2017 201703L C++1z
CXX20 ISO/IEC 14882:2020 202002L C++2a
CXX23 ISO/IEC 14882:2023 202311L C++2b
CXX26 ISO/IEC 9899:202y Work In Progress

C++ Releases

0
150
300
450
600

XVS11 XVS14 XVS17 XVS20 XVS23 XVS26

XVS New Test Cases

11 28 37
100

521
421

There are new test cases in a new category, which is by functionality:

c2y_cpp23.cpp
c2y_cpp26.cpp
c2y_MISRA23.cpp
c2y_ISO_26262.cpp
c2y_ub.cpp
c2y_threads.cpp
c2y_modules.cpp
c2y_lambda.cpp
c2y_coroutines.cpp
c2y_freestanding.cpp
c2y_embedded.cpp
c2y_annex_a.cpp
c2y_annex_b.cpp
c2y_annex_c.cpp
c2y_annex_d.cpp

Each test case tests for specific functionality, alluded to by the test name.

Running the Test Suite

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct
settings for your compiler.

envsuite(.bat) is a script which is basically a large case statement. The cases are settings for different
compilers. Common compilers are available in the script. If your compiler is not represented, you can use
the existing implementations as a guide. envsuite is called in such a way that it instantiates environment
variables used by the build script to run the test cases.

flags.h is a header file included by each test case. It defines flags which determine the standards year to test
against and features that should be tested for the corresponding standards year.

compiler-flags.h is another header included by each test case. It defines specific flags for each compiler. If
your compiler is not represented, add it using existing cases as a guide. The flags are very restricting as
shipped. The reason is that is the only way for the tests actually to return any results, particularly for newer
standards years, for which few, if any of the features tested actually compile. So, after an initial run to get
basic results, you may see that many test cases are not as skipped. Over time, remove the restraint flags to
test newer standards features.

compiler-setup.bat is a Windows-only script that should be run after envsuite.bat to set up specific compiler
environment variables. Modify as required (but don’t forget to run this script after envsuite.bat).

VERSION 2024a August 2024
Your Feedback is Valued

Please feel free to contact me with any issues, errors, omissions, thoughts, … concerning the test cases and
infrastructure in the Plum Hall test suites. The software is constantly updated with new test cases and
infrastructure improvements. A new distribution is released in the month of August every year. Please
contact me by email: dougteeple at plumhall2b.com.

New in xvs24a:

This release has new test cases proposed for C++26 features.

C++ tests may now be checked as conforming to 16.4.2.5 Freestanding as opposed to hosted
implementations. as well as C++ freestanding tests as denoted in the document ISO/IEC DIS 14882:2023.

C++ also now adds tests for undefined behavior, which were previously only available for the C language.
The tests are in conform/undeftests/u*.in. Software, especially FREESTANDING, should not contain any
constructs which have undefined behavior as per the standards. ISO 26262 in particular has a focus on
dealing with undefined/unspecified behavior of C/C++ and on preventing runtime errors. Obeying language
standards is recommended by all current safety standards.

This release also adds new test cases for modules and coroutines in the directories t01a.dir and t01b.dir
respectively. There are 37 new test cases, documented in “newcases-xvs23a-xvs24a.txt”, in multiple
directories. These new test cases predominantly pertain to the C++23 and proposed C++26 standards. This
version also adds support for CUDA files as compiled by the nvcc compiler. These cases must be compiled
on CUDA-enabled hardware. See t00a.dir for examples. Initial support for modules tests can be found in
t01a.dir. Directory t01b.dir contains new tests for coroutines.

Version ISO Document __STDC_VERSION__ Comments

CXX11 ISO/IEC 14882:2011 201103L C++0x
CXX14 ISO/IEC 14882:2014 201402L C++1y
CXX17 ISO/IEC 14882:2017 201703L C++1z
CXX20 ISO/IEC 14882:2020 202002L C++2a
CXX23 ISO/IEC 14882:2023 202311L C++2b
CXX26 Work In Progress

C++ Releases

New in xvs23a:

This release addresses many defect reports from customers in the 22a release and adds new tests for C++20
and C++23 features. As of this release support for older C++ versions prior to C++11 is dropped.

New Test Cases

This release also adds new test cases for modules and coroutines in the directories t01a.dir and t01b.dir
respectively. There are 140 new test cases, documented in “newcases-xvs20b-xvs23a.txt”, in multiple
directories. These new test cases predominantly pertain to the C++20 and C++23 standards. This version
also adds support for CUDA files as compiled by the nvcc compiler. These cases must be compiled on
CUDA-enabled hardware. See t00a.dir for examples. Initial support for modules tests can be found in
t01a.dir. Directory t01b.dir contains new tests for coroutines.

Bug Fixes

There were issues in unarchiving negtests, causing partial results and loss of sequencing. These issues have
been fixed. A number of files had duplicate main’s. A number of test cases were just skeletons, these have
been filled in with the actual test case. Test cases with dynamic exceptions have been modified since ISO
C++17 does not allow dynamic exception specifications. Test cases involving the register keyword ave
been modified since register has been deprecated. Test cases involving the volatile keyword have been
modified since volatile has been deprecated in many contexts.

The 23a update release represents 3+ years of test case bug fixing, infrastructure improvements, and new
test cases for C17, C20, C23, C++20, and C++23, language and library enhancements. There are many
improvements in enhancing the test cases themselves and also enhancing the reporting of the results,
through the new html interfaces for reporting coverage, commentary on the intent of the test cases and
improved standards conformance reporting.

Version ISO Document __STDC_VERSION__ Comments

CXX11 ISO/IEC 14882:2011 201103L C++0x
CXX14 ISO/IEC 14882:2014 201402L C++1y
CXX17 ISO/IEC 14882:2017 201703L C++1z
CXX20 ISO/IEC 14882:2020 202002L C++2a
CXX23 C++2b

C++ Releases

New Test Cases

This release adds new test cases addressing:

	 - Char and string types,
	 - some support for modules,
	 - the “spaceship” operator <=> and
	 - char8_t, u8string and u8string_view
	 - concepts
	 - coroutines
	 - version header
	 - source_location
	 - format
	 - span
	 - ranges and range adapters
	 - syncstream
	 - init-statements and initializers in the range for statement
	 - new attributes: [[no_unique_address]], [[likely]], [[unlikely]]
	 - pack-expansions in lambda init-captures
	 - consteval
	 - constinit
	 - aggregate initialization using parentheses
	 - check compiler feature and attribute definitions.

Infrastructure

Installers are available on the PlumHall server for Linux (installPH.sh) and Windows (installPH.bat). These
installers greatly simplify installing the PlumHall distributions in a standard layout as described below.
Download the installers from the plumhall2b.com server and run the installers to create the default
installations. The installers are customized for each customer:

Executing the scripts will download your distributions and check the MD5 sums. If the sums do not match
the scripts will exit with an error, please contact PlumHall should this occur. If the MD5 sums are correct
then compressed files will be expanded and installed in the standard directory structure.

If you have trouble with the install scripts, you may enter the commands:

If you did a manual download you may then run the installer script with the option --nodownload to
unpack, check the MD5 signatures and create and populate the standard directory structures. The installer
extracts into a directory named ~/PlumHall/ by default. Please ensure that the md5sum utility is available
and verify that the MD5 sums compare.

The script may ask for your plumhall2b ftp password as part of the installation process.

ftp plumhall2b.com
Connected to plumhall2b.com.
220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------
Name (plumhall2b.com:doug): OscarWilde1854
331 User OscarWilde1854 OK. Password required
Password: ************
passive
get installPH.sh
get installPH.bat
quit

~/installPH.sh --help
Download, check the MD5 hash and install the PlumHall test suites in $HOME/PlumHall/
Options:
 --cvs=<version> : install CVS version e.g. --cvs=CVS002
 --xvs=<version> : install XVS version e.g. --xvs=XVS002
 --lvs=<version> : install CVS version e.g. --lvs=LVS002
 --compiler=<name> : brief compiler name used to create directory  

structure, e.g. gcc, edg, clang, etc
 --PW=<zip password> : zip password for distribution
 --login=<login name> : login name given in download instructions, e.g. techcontactname
 --username=<username> : suffix to user name given in download instructions,  

e.g. techcontactname8345
 --keep : do not delete existing directories before unpacking the distributions.
 --verbose : chatty
 --help : help me if you can…

Note: uses scp to securely copy the distributions from the plumhall2b.com server, zip to unpack the
distribution and md5sum to calculate the MD5 hash.

ftp plumhall2b.com
login: OscarWilde1854@plumhall2b.com
passwd: *********
passive
get installPH.sh or get installPH.bat
get xvs22a-XVS000.tar.gz
get xvs22a-XVS000.tar.gz.md5
get xvs22a-XVS000.zip
get xvs22a-XVS000.zip.md5
…
bye

http://plumhall2b.com
http://plumhall2b.com

The default folder naming convention is:

For example, to create directories for each of the standards years C++17 and C++20, for compilers gcc and
clang:

There are three main points of customization:

 - flags.h for C/C++ version options,
 - compiler-flags.h for compiler-specfic options and
 - envsuite.sh (envsuite.bat) to customize the execution environment.

Some customization is possible by using envsuite command line options. For example: envsuite.sh
cc=g++-latest sets the version of g++ to use. Type envsuite.sh -h for current arguments. Further
customization requires editing envsuite.sh(.bat)

The envsuite script has been modified to more easily support a standard PlumHall directory structure and
multiple compilers on the command line. The standard directory structure is:

	
where <cc> is gcc or clang, or cl on Windows. The script createDestination.sh is available to create and
populates these default directories, though the installPH scripts do this by default. It takes a command
line argument cc=<gcc | clang | cl> to create different build directories for multiple compiler testing. The
scripts take arguments cc=gcc or cc=gcc-latest or cc=clang-12 as examples. PH_CXX26 is set as the
default release in flags.h and envsuite.

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct
settings for your compiler.

<Test Suite><PlumHall Release Year>-<Compiler Mnemonic>-c<Standards Year>/

e.g. xvs23a-gcc-c20/

~/PlumHall/xvs23a-<cc>-c20/ build directory
~/PlumHall/xvs23a source directory
~/PlumHall/xvs23a-<cc>-c20-setup/ setup directory updated by script save-setup

~/PlumHall/lvs23a-<cc>-c20/
~/PlumHall/lvs23a/
~/PlumHall/lvs23a-<cc>-c20-setup/

~/PlumHall/cvs23a-<cc>-c20/
~/PlumHall/cvs23a/
~/PlumHall/cvs23a-<cc>-c20-setup/

installPH.sh --stdyear=17 --stdyear=20 --compiler=gcc --compiler=clang

The file flags.h customizes for C++ and C standards releases version:

compiler-flags.h allows for setting flags specific to a particular compiler. These flags are often set to get
around compile errors which prevent viewing overall results. For example lang.c and lib.c link in relevant
test case object files. If a compile of a particular test fails, none of the results of the other tests can be seen.

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct
settings for your compiler.

Customization of flags.h

Customization of compiler-flags.h

The release numbers in flags.h and envsuite MUST Be kept in sync. Customization of ensuite requires a
detailed reading of the source of the script. Usually ensuite is used to set compiler and linker directories as
required to build.

The build system itself has been enhanced. In prior releases adding a test case required hand editing
multiple different makefiles and scripts. In this release this is no longer required, the makefiles and script
automatically adjust to addition/deletion of test cases.

The build system did not adapt well to the new requirements imposed by C++ modules. The t01a.dir
directory contains all the module test cases. The makefile and build script are customized to build modules
in the style of gcc. At this time there is no support for building modules in the Microsoft cl.exe or clang
styles.

In order to test modules and coroutines version 11 of gcc is required on Linux, and c++latest on Windows.

For example on Linux:

. ./envsuite cc=g++-latest

On Windows install the latest version of cl.exe and ensure that STD=c++latest is set in envsuite.bat.
A number of visualization tools have been added.

Customization of envsuite.sh

At the end of each buildmax build the following html files are created:

The file conform-cxx.html and conform-ctests-cxx.html show a summary of successful tests and those with
issues:

The links to the source file, the output log, and the error log are all active and viewed as html.

The value in the Expected column is the number of test cases, where Expected = Actual + Errors + Faults +
Aborts. The Actual column is the sum of the number of test results that matched expected values/behavior
plus the number of skipped test cases. The value in the Skipped column is the number of skipped test
cases. The value in the Errors column is the sum of the number of test cases that meet one of the following
conditions:

 - One or more unexpected values are returned in the test items.
 - A compile error occurred, when the test file was compiled.
 - An execution error occurred, when the test was executed.

The value in the Abort column is the number of test cases that and abort occurred. The value in the Faults
column is the number of tests that meet one of the following conditions:
 - An uncaught exception occurred when the test was executed.
 - An internal error occurred when the test file was compiled.
 - Unknown or unreported test results.

The links to the .out log file and .cpp source file help to quickly find what the issue is and where. The
“t***.out” log filename in column 1 is a link to the actual output log of test result summaries for the entire
test directory.

 coverage-cxx20.html
 commentary-cxx20.html
 conform-ctests-cxx20.html
 conform-cxx20.html
 report-cxx20.html

conform-cxx.html

The source file is linked to browse the test source file.

The make-commentary script creates an html file that shows a brief commentary of the purpose of each
test case by folder name and test name:

t03c.cpp.html

t03.out.html

The filenames are links which will open the files for viewing in the html browser.

The make-coverage script generates the html file coverage-xvsxxa.html which shows for each C/C++
release, the Defect Report number, the directory test case file and a brief description of the Defect Report.
This is useful to find which directories and test cases address a particular feature introduced by the Defect
Report.

Again the file names are links for convenient browsing of the test case suite. All of these html documents
are produced dynamically from the source as the last steps in the buildmax script.

The make-report script generates a table showing all files with the associated commentary:

commentary-cxx.html

coverage-cxx.html

There is a new script runtest.sh(.bat) which, given a test identifier, will find that file in the source
directory and execute just that test. It is useful for debugging test cases. Here is an example of usage in
Visual Studio:

C++23 Language Features
Feature FileName Addressed Test Cases

Literal suffix for (signed) size_t P0330R8 t05h.dir/5_1323a.cpp
Make () more optional for lambdas P1102R2 t06a.dir/75515c.cpp
if consteval P1938R3 t08a.dir/8_5_2c.cpp
Removing Garbage Collection Support P2186R2 lvs: t203.dir/_207_137a1a.cpp
DR: C++ Identifier Syntax using Unicode Standard
Annex 31 P1949R7

DR: Allow Duplicate Attributes P2156R1 t09.dir/9_121a.cpp
Narrowing contextual conversions in static_assert
and constexpr if P1401R5 t08a.dir/8_5_2d.cpp

Trimming whitespaces before line splicing P2223R2 t05b.dir/5221a.cpp
Make declaration order layout mandated P1847R4 t09a.dir/1121a.cpp
Removing mixed wide string literal concatenation P2201R1 t05a.dir/5135a.cpp
Deducing this P0847R7 t06a.dir/7552a.cpp
auto(x) and auto{x} P0849R8 t07d.dir/76141a.cpp
Change scope of lambda trailing-return-type P2036R3 t06a.dir/75515d.cpp
#elifdef and #elifndef P2334R1 t16a.dir/_1527a.cpp
Non-literal variables (and labels and gotos) in
constexpr functions P2242R3 t05h.dir/57p1a.cpp

Consistent character literal encoding P2316R2 t16a.dir/_1527b.cpp
Character sets and encodings P2314R4
Extend init-statement to allow alias-declaration P2360R0 t07c.dir/_9_91a.cpp
Multidimensional subscript operator P2128R6 t08b.dir/_2232a.cpp

5

C++20 Language Features
Feature FileName Addressed Test Cases

Allow lambda-capture [=, this] P0409R2 negtests/m05.in, t05a.dir/5452o22.cpp

__VA_OPT__ P0306R4
P1042R1 t16a.dir/_163o5a_s.cpp

Designated initializers P0329R4
negtests/m08.in, t08b.dir/86o1a.cpp, t08b.dir/86o1a.cpp,
t13e.dir/_133315o21.cpp

template-parameter-list for generic lambdas P0428R2 t05a.dir/545o03.cpp, t05a.dir/545o03.cpp
Default member initializers for bit-fields P0683R1 negtests/m09.in, t09a.dir/92o81.cpp, t09a.dir/92o81.cpp
Initializer list constructors in class template
argument deduction P0702R1 t13d.dir/_13318n1a.cpp

const&-qualified pointers to members P0704R1 t05g.dir/554o62.cpp

Concepts P0734R0

negtests/m05.in, negtests/m14.in, t05a.dir/544o31.cpp,
t05a.dir/547o1a_s.cpp, t14a.dir/_141o1a.cpp, t14a.dir/
_141o1b.cpp, t14a.dir/_141o1c.cpp, t14a.dir/_141o1d.cpp,
t14b.dir/_143o1a.cpp, t14b.dir/_145o1a.cpp, t14b.dir/
_145o1b.cpp, t14b.dir/_145o1c.cpp, t14b.dir/_145o1d.cpp,
t14b.dir/_145o1e.cpp, t14b.dir/_145o1f.cpp, t14b.dir/
_145o1g.cpp, t14b.dir/_147o1a.cpp, t14b.dir/_147o1b.cpp

Lambdas in unevaluated contexts P0315R4 negtests/m05.in
Three-way comparison operator P0515R3 t12e.dir/_1292o1a.cpp
DR: Simplifying implicit lambda capture P0588R1 negtests/m09.in, negtests/m12.in, t05a.dir/5441n29.cpp
init-statements for range-based for P0614R1 t06a.dir/654o11.cpp
Default constructible and assignable
stateless lambdas P0624R2 t05a.dir/75515b.cpp

const mismatch with defaulted copy
constructor P0641R2 t08b.dir/842o12.cpp

Access checking on specializations P0692R1 t09a.dir/9Y25.cpp
ADL and function templates that are not
visible P0846R0 negtests/m14.in, t14b.dir/_142o22.cpp

DR: Specify when constexpr function
definitions are needed for constant
evaluation

P0859R0 negtests/m14.in, t14g.dir/_1481n7a.cpp

Attributes [[likely]] and [[unlikely]] P0479R5 t07d.dir/7_117p1a.cpp
Make typename more optional P0634R3 negtests/m14.in
Pack expansion in lambda init-capture P0780R2 t05a.dir/5452p_172.cpp
Attribute [[no_unique_address]] P0840R2 t03d.dir/362p1a.cpp
Conditionally Trivial Special Member
Functions P0848R3

DR: Relaxing the structured bindings
customization point finding rules P0961R1 t08b.dir/85n3d.cpp

DR: Relaxing the range-for loop
customization point finding rules P0962R1 t06a.dir/632o_101.cpp, t06a.dir/654n1a.cpp

DR: Allow structured bindings to accessible
members P0969R0 t08b.dir/85n4c.cpp

Destroying operator delete P0722R3 t09b.dir/936p1a.cpp
Class types in non-type template
parameters P0732R2 t14b.dir/_141p4a.cpp

Deprecate implicit capture of this via [=] P0806R2 t05a.dir/5452p1a.cpp
explicit(bool) P0892R2 t07a.dir/712p3a.cpp
Integrating feature-test macros P0941R2 t16a.dir/_161p4a.cpp
Prohibit aggregates with user-declared
constructors P1008R1 t06a.dir/631p1a.cpp

constexpr virtual function P1064R0 t07b.dir/715p4a.cpp
Consistency improvements for comparisons P1120R0 t05h.dir/568p1a.cpp
char8_t P0482R6 t02a.dir/2_134Y12e.cpp, t03d.dir/371p2a.cpp
std::is_constant_evaluated() P0595R2 t05h.dir/57p1a.cpp
constexpr try-catch blocks P1002R1 t16a.dir/_16_4_6_13a.cpp

3

Immediate functions (consteval) P1073R3 t05h.dir/57p6a.cpp
Nested inline namespaces P1094R2 t07d.dir/771p1a.cpp
Yet another approach for constrained
declarations P1141R2 t16a.dir/_16_31p2a.cpp

Signed integers are two's complement P1236R1 t03d.dir/371p1a.cpp
dynamic_cast and polymorphic typeid in
constant expressions P1327R1 t05h.dir/5_19p2_15.cpp

Changing the active member of a union
inside constexpr P1330R0 t05h.dir/57p2_10.cpp

Coroutines P0912R5 t01b.dir/*

Parenthesized initialization of aggregates P0960R3

negtests/m05.in//, negtests/m08.in//, negtests/m08.in,
negtests/m12.in//, t05a.dir/51Y51.cpp, t05c.dir/
11_10_2a.cpp, t05c.dir/523m1a.cpp, t07b.dir/7162c41.cpp,
t12d.dir/_1261Y11a.cpp, t12d.dir/_1261Y11b.cpp, t14c.dir/
_1432g13e.cpp

DR: Array size deduction in new-
expressions P1009R2 t09a.dir/9345a.cpp

Modules P1103R3 t01a.dir/*

Stronger Unicode requirements P1041R4
P1139R2

t02a.dir/2_134Y12b.cpp, t02a.dir/2_134Y12c.cpp, t02a.dir/
2_134Y12.cpp

<=> != == P1185R2

negtests/m05.in, negtests/m07.in, t05h.dir/568p1a.cpp,
t09d.dir/9_113r1a.cpp, t11d.dir/_11_113r1a.cpp, t12e.dir/
_1292o1a.cpp, t13b.dir/_13312p8a.cpp, t13b.dir/
_13312p8a.cppauto, t14b.dir/_141p4a.cpp

DR: Explicitly defaulted functions with
different exception specifications P1286R2 negtests/m08.in, t09a.dir/9236r1a.cpp

Lambda capture and storage class
specifiers of structured bindings

P1091R3
P1381R1

t09d.dir/9_6_1a.cpp,t09d.dir/9_6_2a.cpp,t09d.dir/
9_6_3a.cpp, t09d.dir/9_6_4a.cpp

Permit conversions to arrays of unknown
bound P0388R4 to6a.dir/68Y16a.cpp

constexpr container operations P0784R7 t09d.dir/9_2_6b.cpp
Deprecating some uses of volatile P1152R4 multiple
constinit P1143R2 t05h.dir/57p6a.cpp, t16a.dir/_161p4a.cpp
Deprecate comma operator in subscripts P1161R3 negtests/m07.in #389

[[nodiscard]] with message P1301R4
negtests/m07.in, negtests/m07.in, t07d.dir/767k11.cpp,
t07d.dir/767k11.cpp//, t07d.dir/767k11.cpp, t07d.dir/
767k11.cpp, t07d.dir/767k11.cpp, t16a.dir/_161p4a.cpp

Trivial default initialization in constexpr
functions P1331R2 t09d.dir/9_2_6a.cpp, t09d.dir/9_2_6a.cpp

Unevaluated asm-declaration in constexpr
functions P1668R1 t07d.dir/77r1d.cpp

using enum P1099R5 t09c.dir/972Y3.cpp

Synthesizing three-way comparison for
specified comparison category P1186R3

negtests/m05.in, negtests/m07.in, t05h.dir/568p1a.cpp,
t09d.dir/9_113r1a.cpp, t11d.dir/_11_113r1a.cpp, t12e.dir/
_1292o1a.cpp, t13b.dir/_13312p8a.cpp, t13b.dir/
_13312p8a.cppauto, t14b.dir/_141p4a.cpp

DR: [[nodiscard]] for constructors P1771R1
negtests/m07.in, negtests/m07.in, t07d.dir/767k11.cpp,
t07d.dir/767k11.cpp//, t07d.dir/767k11.cpp, t07d.dir/
767k11.cpp, t07d.dir/767k11.cpp, t16a.dir/_161p4a.cpp

Class template argument deduction for alias
templates P1814R0

negtests/m07.in//, negtests/m07.instruct, negtests/m14.in//,
t14b.dir/_141g_111.cpp, t14b.dir/_143c61d.cpp, t14b.dir/
_143o1a.cpp, t14c.dir/_1433g11c.cpp, t14c.dir/
_1433g11.cpp

Class template argument deduction for
aggregates

P1816R0
P2082R1 t12a.dir/_122Y29a.cpp

DR: Implicit move for more local objects and
rvalue references P1825R0 t11d.dir/_1195r1a.cpp

Allow defaulting comparisons by value P1946R0 t05c.dir/11_10_2a.cpp
Remove std::weak_equality and
std::strong_equality P1959R0 t12e.dir/_1292o1a.cpp, t05h.dir/568p1a.cpp

4

Inconsistencies with non-type template
parameters P1907R1

negtests/m14.in//, t14b.dir/_141p4a.cpp, t14c.dir/
_1442c11b.cpp, t14c.dir/_1442c11cb.cpp, t14d.dir/
_14651c31.cpp, t14e.dir/_14623i21bd.cppint, t14e.dir/
_14723c21.cppint, t14g.dir/_14821k12.cpp, t14g.dir/
_14825g_161d.cpp, t14g.dir/_14825m_131a.cpp

DR: Pseudo-destructors end object lifetimes P0593R6

negtests/m05.in, negtests/m05.in//, negtests/m05.inchar,
t03c.dir/343Y51.cpp, t05b.dir/52c1_12.cpp, t05b.dir/
52c1_13.cpp, t05b.dir/52c1_23.cpp, t05b.dir/52c1_25.cpp,
t05b.dir/52f1_26.cpp, t05c.dir/523Y22.cpp, t05c.dir/
524Y25.cpp, t05c.dir/524Y26.cpp, t13h.dir/_1356Y13d.cpp

DR: Converting from T* to bool should be
considered narrowing P1957R2 t07c.dir/7315Y.cpp

5

C++17 Language Features
Feature Paper Addressed Test Cases

New auto rules for direct-list-initialization N3922 t09d.dir/9_2_9_6_2a.cpp
static_assert with no message N3928 t07a.dir/7j1_15da.cpp
typename in a template template parameter N4051 t14a.dir/_141j13.cpp
Removing trigraphs N4086 t02a.dir/22_31a.cpp, negtests/m02.in
Nested namespace definition N4230 t07c.dir/731k_101.cpp

Attributes for namespaces and enumerators N4266 t07c.dir/72j2_11a.cpp, t07c.dir/72j2_11b.cpp, t07c.dir/
731j19b.cpp, t07c.dir/731j19c.cpp

u8 character literals N4267 t02a.dir/2_133k31.cpp
Allow constant evaluation for all non-type template
arguments N4268 t05h.dir/5_20j41.cpp, t14c.dir/_1432j11.cpp

Fold Expressions N4295 t05b.dir/513k11.cpp
Unary fold expressions and empty parameter packs P0036R0 negtests/m14.in
Remove Deprecated Use of the register Keyword P0001R1 negtests/m02.in
Remove Deprecated operator++(bool) P0002R1 t13h.dir/_136Y41.cpp

Make exception specifications part of the type system P0012R1 t05a.dir/512k72.cpp, t05a.dir/5k_132.cpp, t08b.dir/
853k42fb.cpp

Aggregate initialization of classes with base classes P0017R1 t09d.dir/9_4_2a.cpp
__has_include in preprocessor conditionals P0061R1 t16a.dir/_161k0a.cpp, t16a.dir/_161k0a.cpp
DR: New specification for inheriting constructors (DR1941
et al) P0136R1 t07c.dir/733k_151.cpp, t12d.dir/_1263k11a.cpp,

t12d.dir/_1263k11a.cpp, t12d.dir/_1263k11b.cpp
Lambda capture of *this P0018R3 negtests/m05.in, t05a.dir/512k92.cpp
Direct-list-initialization of enumerations P0138R2 negtests/m08.in, t08b.dir/854k339.cpp

constexpr lambda expressions P0170R1
t03e.dir/39k_1052.cpp, t05a.dir/512k21b2.cpp, t05a.dir/
512k21b.cpp, t05a.dir/512k68c.cpp, t05a.dir/
512k74.cpp, t05a.dir/512k74d.cpp

Differing begin and end types in range-based for P0184R0 t16a.dir/_2431a
[[fallthrough]] attribute P0188R1 negtests/m07.in, t07d.dir/765k11.cpp
[[nodiscard]] attribute P0189R1 negtests/m07.in, t07d.dir/767k11.cpp

[[maybe_unused]] attribute P0212R1 negtests/m07.in, t07d.dir/766k11.cpp, t07d.dir/
766k21.cpp

Hexadecimal floating-point literals P0245R1 t02a.dir/2_138k07_s.cpp
Using attribute namespaces without repetition P0028R4 t07d.dir/761g12.cpp

Dynamic memory allocation for over-aligned data P0035R4 t03e.dir/374m24b_s.cpp, t03e.dir/374m24_s.cpp,
t03e.dir/374m24_s.cpp, t05g.dir/535m_11a.cpp

Class template argument deduction P0091R3
negtests/m13.in, t07d.dir/7175m1a.cpp, t13d.dir/
_13318m1a.cpp, t13d.dir/_13318m1b.cpp, t14g.dir/
_149m1a.cpp

Non-type template parameters with auto type P0127R2 negtests/m14.in, t14c.dir/_1432m21.cpp, t14g.dir/
_14825m_131a.cpp

Guaranteed copy elision P0135R1

negtests/m05.in, negtests/m07.in, negtests/m08.in,
negtests/m12.in, negtests/m13.in, t04a.dir/44m1a.cpp,
t06a.dir/663g21a.cpp, t07d.dir/7172m51.cpp, t08b.dir/
86m_1761.cpp, t12a.dir/_122m1a.cpp, t12a.dir/
_122m1b.cpp, t12a.dir/_122m1c.cpp

Replacement of class objects containing reference
members P0137R1 t05h.dir/57j71.cpp, t05h.dir/59m31.cpp

Stricter expression evaluation order P0145R3

Structured Bindings P0217R3

t06a.dir/631r1a.cpp, t08b.dir/85m1a.cpp, t08b.dir/
85m1b.cpp, t08b.dir/85n1a.cpp, t08b.dir/85n1e.cpp,
t08b.dir/85n3d.cpp, t08b.dir/85n4c.cpp, t09d.dir/
9_118r1a.cpp

Ignore unknown attributes P0283R2 t07d.dir/7_117p1b
constexpr if statements P0292R2 t08a.dir/8_5_2a.cpp
init-statements for if and switch P0305R1 t08a.dir/8_5_2b.cpp
Inline variables P0386R2 t09d.dir/9_2_8a.cpp

Removing dynamic exception specifications P0003R5

negtests/m08.in, negtests/m15.in, t03a.dir/337g11.cpp,
t03b.dir/341Y71.cpp, t05g.dir/537i32_s.cpp//, t08a.dir/
835g11.cpp, t08a.dir/8Y44b.cpp, t12a.dir/_121Y12.cpp,
t12b.dir/_124Y12.cpp, t13c.dir/_133112i21b.cpp,
t15b.dir/_154g91_s.cpp, t15b.dir/_154j51.cpp, t15b.dir/
_154Y_112b_s.cpp, t15b.dir/_154Y_121.cpp, t15b.dir/
_154Y_121.cpp, t15b.dir/_154Y_132.cpp, t15b.dir/
_154Y_132.cpp, t15b.dir/_154Y15e.cpp, t15b.dir/
_154Y15f.cpp, t15b.dir/_154Y23a.cpp, t15b.dir/
_154Y81a_s.cpp, t15b.dir/_154Y81a_s.cpp, t15c.dir/
_1552Y11_s.cpp, t15c.dir/_1552Y11_s.cpp, t15c.dir/
_1552Y21_s.cpp, t15c.dir/_1552Y21_s.cpp, t15c.dir/
_1552Y23b_s.cpp, t15c.dir/_1552Y23c_s.cpp, t15c.dir/
_1552Y_99a_s.cpp, t15c.dir/_1552Y_99a_s.cpp

Pack expansions in using-declarations P0195R2 negtests/m07.in, t07c.dir/733m1a.cpp
DR: Matching of template template-arguments excludes
compatible templates P0522R0 negtests/m14.in, t14c.dir/_1433m31a.cpp, t14c.dir/

_1433m31b.cpp

2

C++14 Language Features
Feature Paper Addressed Test Cases

Tweaked wording for contextual
conversions N3323

t05e.dir/534i62e.cpp, t05g.dir/535Yi17b.cpp, t05g.dir/
535Yi17.cpp, t05h.dir/5_19i61a.cpp, t05h.dir/
5_19i61c.cpp, t05h.dir/5_19i61d.cpp, t06a.dir/
642i22.cpp

Binary literals N3472 t02a.dir/2_142i11b.cpp

decltype(auto), Return type deduction
for normal functions N3638

t05a.dir/5452p_172.cpp: t07b.dir/7162i21.cpp t07b.dir/
7162i21.cpp:decltype(auto) t07b.dir/
7164i_124b.cpp:template<class t07b.dir/
7164i44.cpp:decltype(auto) t07b.dir/7164j7_11.cpp:
t07b.dir/7164k771.cpp t07b.dir/7164k771.cpp

Initialized/Generalized lambda
captures (init-capture) N3648

t05a.dir/512i1_11b.cpp t05a.dir/512i_115b.cpp t05a.dir/
512i_115c.cpp t05a.dir/512i_115.cpp t05a.dir/
5452p_172.cpp t14b.dir/_141g_15a.cpp

Generic lambda expressions N3649 t05a.dir/545o03.cpp

Variable templates N3651
t04a.dir/431r1a.cpp t12e.dir/_128r1a.cpp t14a.dir/
_14i19a.cpp

Extended constexpr N3652 t05h.dir/5_19i2_26b.cpp: t07b.dir/715c61.cpp: t07b.dir/
715g82.cpp: t07b.dir/715i13b.cpp: t07d.dir/715i35.cpp

Aggregates with default member
initializers N3653

t03a.dir/337c11a.cpp t03a.dir/337c11b.cpp t05a.dir/
511e21.cpp t08b.dir/85c11.cpp t08b.dir/85c14b.cpp
t09a.dir/92c0_11c.cpp t09a.dir/92c0_11.cpp t09a.dir/
92c0_11e.cpp t09a.dir/92c22c.cpp t09a.dir/92c22e.cpp
t09a.dir/92c22f.cpp t09a.dir/92c51.cpp t12d.dir/
_1262c81c.cpp t12e.dir/_127c42d.cpp t12e.dir/
_127c52a.cpp t12e.dir/_127c52b.cpp

Omitting/extending memory
allocations N3664 t05f.dir/534Y81.cpp, negtests/m07.in, t12e.dir/_129j12aa.cpp, t12e.dir/_129j12ab.cpp, t14a.dir/_141Y12b.cpp, t14a.dir/_141Y13b.cpp

[[deprecated]] attribute N3760 t07c.dir/731j19c.cpp, t07c.dir/72j2_11b.cpp, t07c.dir/731j19c.cpp, t07d.dir/765i1a.cpp, t07d.dir/765i1a.cpp
Sized deallocation N3778 t09b.dir/936p1a.cpp
Single quote as digit separator N3781 t02a.dir/2_148c42b_s.cpp

1

1. Historical Overview

NOTE: SOME OF THE INFORMATION BELOW IS RETAINED AS A HISTORICAL REFERENCE.

For example, while CXX03 may be referenced, it is no longer supported because Microsoft’s cl compiler
only supports versions as far back as CXX14, thus the suites do not support any version prior to CXX11.

Suite++®, the Plum Hall Validation Suite for C++, is a set of C++ programs for testing and evaluating a
C++ language implementation.

This manual will explain how each section of the suite works, how to configure the tests for your system,
and what assumptions are made about previous sections. The examples will illustrate the use of Suite++,
and also demonstrate how some of the sections work.

If you have never used Suite++ before, you need to read all of this manual. This is a large, extremely
configurable suite of test programs. It can provide you with a very powerful testing environment, but it
usually takes several hours to set up the first time. If you get stuck, or have problems, don’t hesitate to call
Plum Hall for technical support. We want you to succeed with this project.

Otherwise, the process should be familiar from your previous work with Plum Hall suites.

New in xvs20a and in xvs19a:

Each subdirectory, such as t02a.dir, provided one large file, such as t02a.cpp, which collected together all or
most of the tests in this section. We have dropped support for the Suite++ feature of providing files such as
xvs02a. We have reluctantly concluded that we have no way of implementing this feature.

New in xvs18a:

Contrary to our expectations a few years ago, we have had to accommodate CXX17 and CXXWP. The
code for CXX17 is ‘n’ and the code for CXXWP is ‘o’. There are some decisions of the Core Group of
SC22/WG21 that are Defect Reports for C++17, and others that only affect C++20.

New in xvs17a:

The requirements of ISO/IEC editors have caused the chapters (“clauses”) in the C++ Standard to be re-
numbered. What was originally clause 17 is now clause 20, etc. Fortunately, the offset is a constant
(three).

For now, only the members of the C++ standards committee are affected by this change, but eventually
everyone will see this offset.

Plum Hall has not changed the testcase numbering system; those of you consulting the most recent drafts
will need to subtract three from the clause number. NOTE: since cxx17 the numbering scheme has gotten
much cloudier, please use the coverage report as discussed above to correlate test cases to defect reports.

1.1 License
Please take the time to read the license that your organization has signed. It is a legal document, and the
restrictions apply to any persons using the product.

Here is a brief summary:

• You may use Suite++ on any machine within a 2-mile radius of your Designated Site.

• Your Management Contact person, or anyone designated by the Management Contact, may call Plum
Hall for consultation and advice.

• You need to notify us if you designate a new Management Contact, or plan to change your Designated
Site, or plan to change your company’s name.

• Suite++ is proprietary, confidential, copyrighted software. You must protect its confidentiality with the
same procedures you use to protect your own company’s confidential information.

• You may not disclose the detailed results of running Suite++, except as permitted in the License.
• You may not take any form of copies of Suite++ away from the Designated Site.

1.2 Technical Overview
The normative tests of Suite++ are found underneath one directory named CONFORM; these are positive
tests for basic conformance with the Standard. (This section provides coverage for C++ analogous to the
LANG tests of the Plum Hall C Validation Suite.)

Tools for use in different “destination” directories are provided in the directory trees named dst-win and
dst-ix. Each of these contains a subtree that matches the structure of the source directories in
CONFORM. Each subtree contains subdirectories for the various specialized tests of Suite++, named
t02a.dir, t03a.dir, etc. Thus, the components of Suite++ are arranged in a directory tree something
like this:

 |
 +---------+-------------------------+
 | | |
conform dst-win dst-ix
 | | |
 ... conform ...
 |
 +----------+------------+--------+
 | | | |
t02a.dir t03a.dir ... t15c.dir t18a.dir

All the configurable files are now found in the “destination root” directory. Your compile scripts need to
use $PHDST (or %PHDST%) in their search-path for header files in order for the compiler to find the
configurable headers.

Also, we define the compiler’s name as $PHCC (or %PHCC%) in the envsuite scripts. Configure this to
the name of your compiler’s executable file (e.g. mycc).

A useful feature of Suite++ allows you to record the reasons for each compile-time skipped case or run-
time failure. In your flags.h file, you can add a definition to some compile-time flags, such as

#define SKIP525Y1_11 our parser error
#define FAIL_261Y11 Plum Hall bug?

Once you’ve categorized your skips in this way, the strings you defined will show up in the execution
output, something like this:

#SKIPPED 525Y1_11 (>our parser error<)
#FAILED _261Y11 (>Plum Hall bug?<)

And the “unexpected” skips and fails will show up with the distinctive string “(><)” attached to each
“unexpected” skip or fail. This makes it much easier to re-run the test suite after you’ve made compiler
changes, because you can quickly search for the “><“ string in the output to see if any new failures have
appeared.

You probably will need to put some SKIP flags into your flags.h file to skip test cases that prevent
you from building and executing the CONFORM programs.

In Suite++, we have also provided a simpler way of determining the SKIP and FAIL flags. Each
subdirectory, such as t02a.dir, the subdirectory also provides individual files, 2_10Y04.cpp,
2_10Y11.cpp, etc., each of which contains only one specific test case. Therefore, you can compile and
run the smaller files individually. Each subdirectory contains a build script that performs this logic
automatically.

We define the compiler’s name as $PHCC (or %PHCC%) in the envsuite scripts. Configure this to the
name of your compiler’s executable file (e.g. mycc).

You can record the reasons for each compile-time skipped case or run-time failure. In your flags.h file
you can add a definition to some compile-time flags, such as

#define SKIP_131Y1_11 our parser error
#define FAIL_151Y11 Plum Hall bug?

Once you’ve categorized your skips and fails in this way, the strings you defined will show up in the
execution output, something like this:

#SKIPPED _131Y1_11 (>our parser error<)
#FAILED _151Y11 (>Plum Hall bug?<)

And the “unexpected” skips and fails will show up with the distinctive string “(><)” attached to each
“unexpected” skip or fail. This makes it much easier to re-run the test suite after you’ve made compiler
changes, because you can quickly search for the “><“ string in the output to see if any new failures have
appeared.

The buildmax script will compile all unbuilt test cases using Make dependencies, where buildall will
build all of the test cases regardless.

2.: CONFIGURATION
2.1 What You Need to Know and Do
In order to install and run Suite++, there are several things you need to know, and several things you need
to be able to do. If you don’t have this knowledge yourself, then you need to locate someone who knows
these things and is able to provide you with the information.

• You need to know how to use a text editor on each system you will be using.

• You need to know the basics of how to write and execute “script” (or “batch”) files on each system.

• You need to know how much free disk space is available on each system. Fifty megabytes (50 MB) is
often enough, if you remove each executable file after gathering its output. If you have less, refer to
the Resources section later in this chapter for details.

• You need to know some C++ programming, to customize certain files and to understand the general
meaning of the compiler diagnostics that may be produced by some of the nastier test cases.

• You need to know which compiler and library you are supposed to test, and what commands,
arguments, environment settings, etc., are needed in order to invoke the compiler you’re testing. (The
compiler you’re testing is called the target compiler.) You may also need to use a different compiler to
compile the tool programs themselves. This is known as the host compiler, and it may have its own
commands, arguments, environment settings, etc.

• Similarly, you need to know how to invoke the target linker and the host linker, to link the object-files
produced by the compilers together with the appropriate libraries.

• Once the target compiler and target linker have produced an executable program to be tested, you need
to know how to execute that executable program. On some systems this is almost trivial; on others it
involves downloading from one machine to another, capturing output, networking the output back to
the host machine, etc.

2.2 Running Suite++

There are many different modes in which you can use the Plum Hall Suites:

• Script (or “batch”’) command files for compiler, linker, etc, or “line-by-line” individual commands.
• Host compiling (host and target compiler are the same), or cross compiling (host and target are

different).
• UNIX platform, or Windows platform, or some other platform.
We have packaged the Suite++ so that any set of these choices can be chosen.

2.3 Scripts
Using scripts (or “batch”’ files) for compiler, linker, etc., simplifies many aspects of running the suite in
varying environments. For example, many QA departments will need to routinely re-execute Suite++ using
dozens of different compiler flags and options. Using an unchanging set of compiler scripts, and just
changing the flags and options in one script, or just setting the flags into environment variables, allows
routine re-running of Suite++.

In Suite++. there is only one script to perform compile-link-and-go:

xvsclgo pgm [output-file-name] [bfile]

 Compile pgm, taking source and headers from the appropriate directories. Put diagnostic messages
into pgm.clg. Put output into output-file-name, if specified, otherwise send output to standard output. If the
third argument is bfile, pgm.cpp will be linked with pgm_b.cpp.

envsuite

The envsuite script requires hand-configuration of environment variables for host and target compilers.
You must examine it line-by-line. Here are a few of the environment variables it defines:

UNIX CONSIDERATIONS

If you are on a UNIX platform, you may need to execute the chmodall script:

sh chmodall

in order to mark all your script files as executable files. (It can’t hurt, whether needed or not.)

PHCC the name of the target compiler

PHCFLAGS compiler flags (for target compiler)

OLDPATH original value of PATH variable before starting

PATH command search path, including compilers, linkers, etc.

PHCVS the directory where your CV-Suite is installed

DOS CONSIDERATIONS

The scripts and makefiles need three commands which are common on UNIX but not standard on
Windows: cat, rm and cp. We have written work-alike C source files named phcat.c (for ``Plum Hall
cat”), phcp.c (for ``Plum Hall cp”), and phrm.c (for “Plum Hall rm”). The makefile in dst-win
will compile these to produce exe files (phcat.exe, phcp.exe, phrm.exe). After building each
of these exe files, the makefile invokes a “setup” script (setup-cat.bat, setup-cp.bat,
setup-rm.bat). Using “cat” as an example, the setup script determines whether a command named
cat is already available on this system. If not, it copies phcat.exe to be named cat.exe, so that any
further invocation of cat will invoke this exe file.

2.4 buildmax
When you have configured for your choices of environment, you should be ready to run the tests.

The buildmax command runs xvsclgo upon each of the source files in the conform directory. It
also runs the appropriate tests from the CV-Suite. If you have not already read the CV-Suite manual, you
should read it now.

The buildmax command also builds the summary files (.sum,.det,.html files), using the
appropriate file of expected results (.exp file).

Besides the scripts, you will need to configure these other files that are in the destination directory:

Setting the envsuite environment

Each time you begin a testing session it is important to “source”’ the envsuite script to establish all the
necessary environment variables. This operation exports the environment variables into your interactive
shell.

You do this in different ways depending on your host system’s command processor or “shell”:

MS-DOS	 simply type envsuite.
Bourne shell	 use the “dot”’ command: “. ./envsuite”

2.5 Installing This Release
We try to accommodate our customers’ wide variety of environments, operating systems, and purposes for
the suite. Also, we try to use update procedures which will be reasonably efficient for those who make no
changes to the distributed Suite, while still being flexible enough for those of you who make local changes.

flags.h	 configurable parameters, including SKIP and FAIL
flags

hocompil.h	 characteristics of host-compiler (if different from
target compiler)

homachin.h	 characteristics of host-machine (if different from
target machine)

hodefs.h	 flags for hosted compilation (if different from
defs.h)

Some of you are primarily interested in the quality assurance process of running the suites, exactly as
distributed, in a reliable fashion that takes a minimum of your time. Others of you are developing
compilers that change daily, tracking the latest Standard, with numerous local changes and SKIP flags to
accommodate unimplemented features.

We always welcome ideas and suggestions for improvement, so please let us know if you see a better way
of doing something.

Minimal and Complete Installation Choice

The original packaging of Suite++ contained only a few dozen source files. Although the small number of
compilations was convenient, the downside was the iterative manual process of determining the SKIP flags
for the flags.h header, to skip language features yet unimplemented in the compiler.

Installing the Distribution

Most importantly, install to an empty directory. Installing over the old directory structure will cause no end
of chaos. (Also, removing the prior release will help you fulfill your license requirement to maintain
source-control of previous versions.)

Verifying Your Files

No matter which method you used for updating—diskette, tape, or patch from diffs—you can check your
resulting updated files by compiling the txtchk program, and then using it to test the checksum of all
your file contents:

cd ~/PlumHall/xvs22a-gcc-c20 (or whatever your source root is named)
txtchk -f xvs22a

3.: CONFORM

The CONFORM section provides several thousand C++ programs, each covering part of a clause in the
Language section of the Standard:

t02a	 Clause 2;
t03a	 First part of clause 3;
t03b	 second part of clause 3;

etc.

Each program writes a report to its .out file in a form very similar to the output of the LANG program in
the C Suite. That is, t02a reports that it has executed the first test with the output

***** Reached first test *****

t02a reports errors using messages of the form

ERROR in t02a at line 656: (4) != (5)

and prints a summary of the form

***** 18 individual successful items in t02a
***** 11 successful tests in t02a
***** 0 errors detected in t02a
***** 0 skipped sections in t02a

An “individual successful item” is the successful outcome of one individual test function (ieq, chk, etc.).
A “successful test” is the completion of a begin_case-end_case sequence with no errors in its
individual items.

3.1 Compiling and Executing Suite++ CONFORM
In the distribution, C++ source files have a .cpp extension and headers have a .h extension. The .c files
may be renamed to, say, .cxx files to suit your compiler, but the .h files should not be renamed.

The buildmax script specifies all the steps for building and executing each program. Or you can create
the executables by invoking your compiler and linker directly from a command line.

For example, to create the executable for t02a, compile and link the following files: t02a.cpp and
util.c. The compiler command line is typically of the form

CC -ot02a t02a.cpp util.c

where CC is the C++ compiler command, t02a.cpp supplies the main function for the program, and
util.c contains utility functions used in the test cases.

Alternatively, if in your flags.h file you place a definition like

#define UTIL_SHOULD_BE_INCLUDED

then the compilation will #include “util.c” and you need not link with it. This simplifies the
compilation process somewhat, and if the compiler supports precompiled headers there is not much
overhead in the method.

3.2 Selective Enabling/Disabling with flags.h
In the destination directory, you should create a file named flags.h. This header is #included by
each Suite++ file, so that you can record specific enable/disable flags for the tests being made in this
directory tree.

If your C++ compiler cannot compile a particular test case, you can use a SKIP flag to disable that case.
For example, to prevent compilation of test case _17312Y21 in t02a.c, add

#define SKIP_17312Y21 because some reason

to the file flags.h. Then recompile and relink t02a. The line

#SKIPPED: _17312Y21 (>because some reason<)

will appear in the output when you execute t02a. The total number of skipped cases appears at the end of
the output.

You can also define DISALLOW flags in flags.h to globally disable certain language features that your
compiler may not be able to handle.

For example

#define DISALLOW_MEMBER_TEMPLATES

compiles alternative code for some cases to accommodate the absence of member templates. See the
flags.h file for description of each flag. (But note that the DISALLOW flags do not affect
negtests.)

Using

#define DISALLOW_CXX17

causes the set of all those test cases to be disabled.

For testing strict conformance, these “DISALLOW” flags are required, and they are all turned on (in
“flags.h”)

The “disputed cases”, described in the following section, are excluded by default.

3.3 Controversial Cases
We strive to make Suite++ test the C++ language as commonly understood by the worldwide C++
community. The purpose of the ongoing standard is to capture that understanding. However, there will
probably always be specific issues in the language which evoke differing interpretations, and hence there
will probably be specific tests Suite++ which evoke differing opinions from Suite++ users about the
expected results. Suite++ accommodates controversial tests in the category of “disputed cases”, which are
disabled by

#define DISALLOW_DISPUTED

A “disputed case” is a test for which some Suite++ users have expressed the view that, although the test
reflects the words in the Standard, the words in the Standard do not reflect common practice, or that the
words in the Standard are in the process of being revised within the C++ committee.

We hope to eventually resolve all the disputed cases and convert them to agreeable tests in the CONFORM
sections of Suite++. We welcome your feedback regarding our judgments in these areas.

3.4 Running the CONFORM Programs
Once configuration is completed, you are ready to compile and execute the CONFORM programs. Any
compile errors reported may represent currently-unimplemented syntactic features, or bugs in your
compiler, or bugs in Suite++. Or, don’t forget, sometimes a compile error means that the compiler wasn’t
properly installed, or that you weren’t told the proper command-line options to use, or that the compilation
environment wasn’t properly set up. You have to investigate all these possibilities.

If you are unable to trace the cause of any compile errors whilst building CONFORM, you should contact
Plum Hall for assistance.

Users have asked us to help speed up testing on parallel multiprocessor systems. We have provided a
makefile in the dst*/conform folder, which can be executed with

	 make -k --jobs N all

so that users with N processors should see an N-fold speedup.

