
LibSuite++®
THE PLUM HALL VALIDATION SUITE FOR

THE STANDARD C++ LIBRARY

VERSION 2025a August 2025
Your Feedback is Valued

Please feel free to contact me with any issues, errors, omissions, thoughts, … concerning the test cases and
infrastructure in the Plum Hall test suites. The software is constantly updated with new test cases and
infrastructure improvements. A new distribution is released in the month of August every year. Please
contact me by email: dougteeple at plumhall2b.com.

New in lvs25a:

This release moves forward with new test cases for C++26.

There are 128 new LVS test cases, documented in “coverage-c26.html”, in multiple directories. These new
test cases predominantly pertain to the proposed C++26 standard. The total number of test cases is now
more than 6800, including positive, negative and undefined cases.

The file compiler-flags.h contains defines for common compilers. Modify these settings if your compiler is
implemented in the list, our add custom settings for your compiler. Also review envsuite in detail. Some
suggested settings are included for common compilers. Use these settings to create the appropriate build
environment for the version of the compiler that you wish to test.

Version ISO Document __STDC_VERSION__ Comments

CXX11 ISO/IEC 14882:2011 201103L C++0x
CXX14 ISO/IEC 14882:2014 201402L C++1y
CXX17 ISO/IEC 14882:2017 201703L C++1z
CXX20 ISO/IEC 14882:2020 202002L C++2a
CXX23 ISO/IEC 14882:2023 202311L C++2b
CXX26 Work In Progress

C++ Releases

0
45
90
135
180

LVS11 LVS17 LVS20 LVS23 LVS26

LVS New Test Cases

11 30
79

174
128

Running the Test Suite

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct
settings for your compiler.

envsuite(.bat) is a script which is basically a large case statement. The cases are settings for different
compilers. Common compilers are available in the script. If your compiler is not represented, you can use
the existing implementations as a guide. envsuite is called in such a way that it instantiates environment
variables used by the build script to run the test cases.

flags.h is a header file included by each test case. It defines flags which determine the standards year to test
against and features that should be tested for the corresponding standards year.

compiler-flags.h is another header included by each test case. It defines specific flags for each compiler. If
your compiler is not represented, add it using existing cases as a guide. The flags are very restricting as
shipped. The reason is that is the only way for the tests actually to return any results, particularly for newer
standards years, for which few, if any of the features tested actually compile. So, after an initial run to get
basic results, you may see that many test cases are not as skipped. Over time, remove the restraint flags to
test newer standards features.

compiler-setup.bat is a Windows-only script that should be run after envsuite.bat to set up specific compiler
environment variables. Modify as required (but don’t forget to run this script after envsuite.bat).

VERSION 2024a August 2024
Your Feedback is Valued

Please feel free to contact me with any issues, errors, omissions, thoughts, … concerning the test cases and
infrastructure in the Plum Hall test suites. The software is constantly updated with new test cases and
infrastructure improvements. A new distribution is released in the month of August every year. Please
contact me by email: dougteeple at plumhall2b.com.

New in lvs24a:

This release moves forward with new test cases for C++26.

C++ tests may now be checked as conforming to 16.4.2.5 Freestanding as opposed to hosted
implementations. as well as C++ freestanding tests as denoted in the document ISO/IEC DIS 14882:2023.

There are 113 new LVS test cases, documented in “newcases-lvs23a-lvs24a.txt”, in multiple directories.
These new test cases predominantly pertain to the C++23 and proposed C++26 standards. This release also
contains initial support for testing freestanding C++ in t161.dir/. Directory t01a.dir/ contains some tests for
modules, though more detailed testing is found in xvs24a.

C++ also now adds tests for undefined behavior, which were previously only available for the C language.
The tests are in conform/undeftests/u*.in. Software, especially FREESTANDING, should not contain any
constructs which have undefined behavior as per the standards. ISO 26262 in particular has a focus on
dealing with undefined/unspecified behavior of C/C++ and on preventing runtime errors. Obeying language
standards is recommended by all current safety standards.

The file compiler-flags.h contains defines for common compilers. Modify these settings if your compiler is
implemented in the list, our add custom settings for your compiler. Also review envsuite in detail. Some
suggested settings are included for common compilers. Use these settings to create the appropriate build
environment for the version of the compiler that you wish to test.

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct
settings for your compiler.

Version ISO Document __STDC_VERSION__ Comments

CXX11 ISO/IEC 14882:2011 201103L C++0x
CXX14 ISO/IEC 14882:2014 201402L C++1y
CXX17 ISO/IEC 14882:2017 201703L C++1z
CXX20 ISO/IEC 14882:2020 202002L C++2a
CXX23 ISO/IEC 14882:2023 202311L C++2b
CXX26 Work In Progress

C++ Releases

100

Release 24a New Test Cases

This release also adds new test cases addressing:

- Hashing support for std::chrono value classes
- std::is_within_lifetime
- Native handles in file streams
- Interfacing string streams with std::string_view
- Interfacing std::bitset with std::string_view
- More constexpr for <cmath> and <complex>
- Adding the new 2022 SI prefixes on ratios: std::quecto, std::ronto, std::ronna, and std::quetta
- std::copyable_function
- std::submdspan()
- <debugging>: Debugging Support
- <linalg>: A free function linear algebra interface based on the BLAS
- Added tuple protocol to std::complex
- views::concat
- Concatenation of strings and string views
- std::ranges::generate_random
- Printing Blank Lines with std::println()

- std::formatter<std::filesystem::path>

Filename Test Case
t170.dir/_17_15r1b.cpp 21.3.11 Constant evaluation context - is_constant_evaluated, is_within_lifetime…
t170.dir/_8_4_4a.cpp 8.4.4 Transaction-safe function - implements TS_19841 - CXX26 ...
t182.dir/_183a01a.cpp std::int_least128_t - implements P3140R0 - C++26 ..
t182.dir/_183a01c.cpp std::int_least128_t - implements P3140R0 - C++26 ...
t182.dir/_183a01d.cpp std::atomic_int_least128_t - atomic128_t - implements P3140R0 - C++26 ...
t200.dir/_221422a.cpp 22.14.2.2 Standard format specifiers. - implements P2510R3 "Formatting ...
t200.dir/_221422b.cpp 22.14.2.2 Fix formatting of code units as integers. ...
t200.dir/_221422c.cpp 22.14.6 Formatter - Type-checking format args -- skipped ...
t200.dir/_22144a.cpp 22.14.4 Runtime format strings II. - implements P2918R2 ...
t201.dir/_203a1b_s.cpp 21.4.2 Header <ratio> synopsis - implements P2734R0 "Adding ...
t202.dir/_20_14_1742b.cpp 20.14.17.4.2 Class template move_only_function: Partially Mutable Lambda

Captures ...
t202.dir/_20_2_5a.cpp Utility to check if a pointer is in ...
t202.dir/_22101746a.cpp 22.10.17.4.6 [func.wrap.ref] - implements P0792R14 "function_ref: a type-

erased ...
t202.dir/_22102a.cpp 22.10.2 [functional.syn] copyable_function - implements P2548R6 - CXX26 ..
t202.dir/_22132a.cpp 22.13.2 Primitive numeric output conversion. Testing for success ...
t202.dir/_22133a.cpp 22.13.3 Primitive numeric input conversion. Testing for success ...
t203.dir/_20_1454p1b.cpp Comparisons for reference_wrapper - implements P2944R3 - CXX26 ...
t203.dir/_20_146b.cpp 20.14.6 views::concat - implements P2542R7 - CXX26 ...
t203.dir/_207_132a1c_s.cpp constexpr STD shared_ptr - implements P3037R1 - CXX26 ...
t203.dir/_2077p3a.cpp Member visit - implements P2637R3 - 2023 - ...
t203.dir/_27_7_9_1c.cpp 27.7.9, Formatting of chrono Time Values - implements ...
t215.dir/_2332a.cpp Interfacing stringstreams with string_view - implements P2495R3 - ...
t215.dir/_2681b.cpp 6.8.1 Types General. - P2670R0 "Non-transient constexpr allocation" ...
t217.dir/_214a7a.cpp to_string or not to_string - implements P2587R3 - ...
t238.dir/_2345f0_14a.cpp bitset<> template ctor from stringview subrange. - implements ...
t244.dir/_2437a.cpp 24.3.7 [containers.sequences.general] - inplace_vector - A dynamically-

resizable vector ...
t244.dir/_24441a.cpp Better Lookups for map and unordered_map - implements ...
t244.dir/_247226a.cpp 4.7.2.2.6 [views.span] Element access - span.at() - implements ...
t244.dir/_24722a.cpp 24.7.2.2 [views.span] Class template span - CXX20 ...
t244.dir/_24722b.cpp 24.7.2.2 [views.span] STD span over an initializer list ...
t244.dir/_267121b.cpp views::(take|drop)_exactly - implements P3230R0 - CXX26 ...
t244.dir/_267121c.cpp views::slice - implements P3216R0 - CXX26 ...

http://span.at

t244.dir/_267121d.cpp views::transform_join - implements P3211R0 - CXX26 ...
t251.dir/_271017a.cpp 27.10.17 Saturation arithmetic [numeric.sat] - implements P0543R3 - ...
t258.dir/_2533a.cpp STD basic_const_iterator should follow its underlying type’s

convertibility ...
t260.dir/_2652b.cpp 26.5.2 Header <bit> synopsis - implements P3103R1: More ...
t260.dir/_2652c.cpp 26.5.2 Header <bit> synopsis - implements P3104R2: Bit ...
t261.dir/_2626Y84.cpp Add tuple protocol to complex - implements P2819R1 ...
t263.dir/_26572g26b.cpp 26.5.7.2 Vector API for random number generation ...
t263.dir/_26572g26.cpp 26.5.7.2 function template generate_canonical ...
t275.dir/_3174b.cpp Runtime format strings - implements P2905R2 - CXX26 ...
t275.dir/_3174c.cpp Header <format> - implements P2093R14 Formatted output, P2216R3 ...
t27k.dir/_31102a.cpp 31.10.2 [filebuf] Class template basic_filebuf - implements P1759R6 ...
t27k.dir/_317635b.cpp Printing Blank Lines with println - implements P3142R0 ...
t290.dir/_2914a.cpp Hashing support for STD chrono value classes - ...
t305.dir/_30_33p1b.cpp Contracts for C++ - contracts are runtime ...
t305.dir/_30_33p1c.cpp Contracts for C++ - contracts are runtime ...
t305.dir/_30_33p1d.cpp Contracts for C++ - contracts are runtime requirements ...
t305.dir/_30_33p1e.cpp Contract testing support - contracts are runtime requirements ...
t305.dir/_30_33p1f.cpp Contracts for C++ - contracts are runtime requirements ...
t305.dir/_30_33p1g.cpp Contracts for C++ - Compile-time Evaluation - implements ...
txd2.dir/_3031a.cpp STD text_encoding: text encodings identification - implements P1885R12
t26a.dir/c2y_09110a.cpp Make assert() macro user friendly for C and ..
t26a.dir/c2y_1355a.cpp Concept and variable-template template-parameters...
t26a.dir/c2y_1374a.cpp Pack Indexing - implements P2662R3 - see also ...
t26a.dir/c2y_1374b.cpp P2355R2: Postfix fold expressions - implements P2355R2 - ...
t26a.dir/c2y_1374c.cpp The Oxford variadic comma - implements P3176R0 - ...
t26a.dir/c2y_142o22a.cpp ADL-proof STD projected. Argument Detected Logic - implements ...
t26a.dir/c2y_17_2_1.cpp 17.2.1 Header <cstddef> synopsis - Make direct-initialization for ...
t26a.dir/c2y_17_3_2.cpp 17.3.2 Header <version> synopsis - Freestanding Feature-Test Macros ..
t26a.dir/c2y_20_11_142b.cpp Hazard pointers - Hazard Pointers for C++26 - ...
t26a.dir/c2y_20_2_2a.cpp std::uninitialized<T> - implements P3074R2 - CXX26 - 2023 ...
t26a.dir/c2y_20_3_1_3a.cpp Mixed comparisons for smart pointers - implements P2249R6 ...
t26a.dir/c2y_21_3_11.cpp 21.3.11 Emitting messages at compile time - P2758R2 ..
t26a.dir/c2y_21_3_7.cpp 21.3.7 Disallow Binding a Returned Glvalue to a ...
t26a.dir/c2y_21_3_8_6.cpp 21.3.8.6 STD constant_wrapper - P2781R4 - C++26 ...
t26a.dir/c2y_21_3_87.cpp Remove return type deduction in STD apply - ...
t26a.dir/c2y_22_10_14a.cpp Universal Template Parameters - P1985R3 - C++26 ...
t26a.dir/c2y_22_10_14b.cpp A Simple Approach to Universal Template Parameters - ...
t26a.dir/c2y_22_10_14.cpp 22.10.14 Function templates bind_front and bind_back - Bind ...
t26a.dir/c2y_22_16_2.cpp 22.16.2 Header <debugging> synopsis - Standard library header ...
t26a.dir/c2y_22_2_2a.cpp 22.2.2 Object relocation in terms of move plus ...
t26a.dir/c2y_22_2_2.cpp 22.2.2 Relax wording to permit relocation optimizations in ...
t26a.dir/c2y_22_4_7.cpp 22.4.7 STD variant_alternative_index and STD tuple_element_index ...
t26a.dir/c2y_22_5_3.cpp 22.5.7 STD optional<T&> - P2988R4 - C++26 ...
t26a.dir/c2y_22_6_4.cpp 22.6.4 STD variant_alternative_index and STD tuple_element_index...
t26a.dir/c2y_23_3_3_2a.cpp sub-string_view from string - P3044R0 - C++26 ...
t26a.dir/c2y_23_3_3_8.cpp 23.3.3.8 String operations sub-string_view from string - P3044R0 ...
t26a.dir/c2y_237p1a.cpp Concatenation of strings and string views. - implements ...
t26a.dir/c2y_24_3_3_6a.cpp 24.3.3.6 mdspan of All Dynamic Extents - P2299R4 ...
t26a.dir/c2y_24_3_3_6b.cpp 24.3.3.6 Copy and fill for mdspan - P3242R0 ...
t26a.dir/c2y_24_3_3_6.cpp 24.3.3.6 dextents Index Type Parameter, Better mdspan's CTAD ..
t26a.dir/c2y_24_3_7.cpp 24.3.7 inplace_vector - A dynamically-resizable vector with fixed ...
t26a.dir/c2y_26_2_1_1.cpp 26.2.1.1 maybeview - A view of 0 or ...
t26a.dir/c2y_26_2_1_2.cpp 26.2.1.2 [range.nullable.view] nullable view - P1255R12 - C++26 ...

Filename Test Case

t26a.dir/c2y_26_5_3a.cpp 26.5.3 View interface - view_interface::at() - P3052R1 - ...
t26a.dir/c2y_26_6_4a.cpp 26.6.4a Add STD views::upto(n) - P3060R1 - C++26 ...
t26a.dir/c2y_274a.cpp Enabling list-initialization for algorithms - implements P2248R8 - ...
t26a.dir/c2y_27822a.cpp 27.8.2.2 constexpr Stable Sorting - P2562R1 - C++26 ...
t26a.dir/c2y_28_6_2a.cpp Resolve inconsistencies in begin/end for valarray and braced …
t26a.dir/
c2y_28_9_13_blas1.cpp

28.9.1.3 BLAS 1 algorithms - implements P1673R12 ...

t26a.dir/
c2y_28_9_14_blas2.cpp

28.9.1.4 BLAS 2 algorithms - implements P1673R12 …

t26a.dir/
c2y_28_9_15_blas3.cpp

28.9.1.5 BLAS 3 algorithms - implements P1673R12 ...

t26a.dir/c2y_28_9a.cpp Fix C++26 by optimizing linalg::conjugated for noncomplex value ..
t26a.dir/c2y_28_9c.cpp Basic linear algebra algorithms - <linalg>: A free ...
t26a.dir/c2y_28_9.cpp 28.9 Basic linear algebra algorithms - <linalg>: A ...
t26a.dir/c2y_30_4a.cpp Quantities and units library - implements P3045R0 - ...
t26a.dir/c2y_31_12_4a.cpp Formatting of std::filesystem::path - implements P2845R6 - CXX26 ...
t26a.dir/c2y_3174a.cpp Header <print> synopsis - test runtime formatting - ...
t26a.dir/c2y_33_11_2.cpp 33.11.2 Read-copy update (RCU) - Safe reclamation. Read-copy ...
t26a.dir/c2y_33_4_3.cpp 33.4.3 [thread.thread.class.general] - Hassle-free thread attributes
t26a.dir/c2y_33_5_2a.cpp 33.5.2 Header <atomic> synopsis [atomics.syn] - Atomic floating-point ...
t26a.dir/c2y_33_5_2.cpp 33.5.2 Header <atomic> synopsis [atomics.syn] - Expose std::atomic_ref's
t26a.dir/c2y_33_5_7.cpp 33.5.7 Expose std::atomic_ref's object address - P2835R2 - ...
t26a.dir/c2y_6_7_55.cpp 6.7.5.5 Dynamic storage duration - Freestanding Language: Optional ...
t26a.dir/c2y_7_6_18a.cpp Allowing exception throwing in constant-evaluation...
t26a.dir/c2y_7_6_18b.cpp Inspecting exception_ptr - implements P2927R2 - C++26 ...
t26a.dir/c2y_9_12_4.cpp 9.12.4 Carries dependency attribute - C++26 ...

Filename Test Case

New in lvs23a:

This release addresses many defect reports from customers in the 22a release and adds new tests for C++20
and C++23 features. As of this release support for older C++ versions prior to C++11 is dropped.

Release 23a New Test Cases

There are 220 new test cases, documented in “newcases-lvs20b-lvs23a.txt”, in multiple directories. These
new test cases predominantly pertain to the C++20 and C++23 standards. This release also contains initial
support for testing freestanding C++ in t161.dir/. Directory t01a.dir/ contains some tests for modules,
though more detailed testing is found in xvs23a.

Release 23a Bug Fixes

There were issues in unarchiving negtests, causing partial results and loss of sequencing. These issues have
been fixed. The single m19.in test case archive has been split into individual directory archives, A number
of files had duplicate main’s. A number of test cases were just skeletons, these have been filled in with the
actual test case. Test cases with dynamic exceptions have been modified since ISO C++17 does not allow
dynamic exception specifications. Test cases involving the register keyword ave been modified since
register has been deprecated. Test cases involving the volatile keyword ave been modified since volatile has
been deprecated in many contexts.

The 23a update release represents 3+ years of test case bug fixing, infrastructure improvements, and new
test cases for C++20, and C++23, language and library enhancements. There are many improvements in
enhancing the test cases themselves and also enhancing the reporting of the results, through the new html
interfaces for reporting coverage, commentary on the intent of the test cases and improved standards
conformance reporting.

Version ISO Document __STDC_VERSION__ Comments

CXX11 ISO/IEC 14882:2011 201103L C++0x
CXX14 ISO/IEC 14882:2014 201402L C++1y
CXX17 ISO/IEC 14882:2017 201703L C++1z
CXX20 ISO/IEC 14882:2020 202002L C++2a
CXX23 Work In Progress

C++ Releases

http://m19.in

Release 23a New Test Cases

This release also adds new test cases addressing:

	 - Char and string types,
	 - some support for modules,
	 - the “spaceship” operator <=> and
	 - char8_t, u8string and u8string_view
	 - concepts
	 - coroutines
	 - version header
	 - source_location
	 - format
	 - span
	 - ranges and range adapters
	 - syncstream,
	 - init-statements and initializers in the range for statement
	 - new attributes: [[no_unique_address]], [[likely]], [[unlikely]]
	 - pack-expansions in lambda init-captures
	 - consteval
	 - constinit
	 - aggregate initialization using parentheses
	 - check compiler feature and attribute definitions.

Infrastructure
Installers are available on the PlumHall server for Linux (installPH.sh) and Windows (installPH.bat). These
installers greatly simplify installing the PlumHall distributions in a standard layout as described below.
Download the installers from the plumhall2b.com server and create the default installations. The installers
are customized for each customer:

Executing the scripts will download your distributions and check the MD5 sums. If the sums do not match
the scripts will exit with an error, please contact PlumHall should this occur. If the MD5 sums are correct
then compressed files will be expanded and installed in the standard directory structure.

If you have trouble with the install scripts, you may enter the commands:

If you did a manual download you may then run the installer script with the option --nodownload to
unpack, check the MD5 signatures and create and populate the standard directory structures. The installer
extracts into a directory named ~/PlumHall/ by default. Please ensure that the md5sum utility is available
and verify that the MD5 sums compare.

The script will ask for your plumhall2b ftp password as part of the installation process.

The default folder naming convention is:

ftp plumhall2b.com
Connected to plumhall2b.com.
220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------
Name (plumhall2b.com:doug): OscarWilde1854
331 User OscarWilde1854 OK. Password required
Password:
passive
get installPH.sh
get installPH.bat
quit

~/installPH.sh --help
Download, check the MD5 hash and install the PlumHall test suites in $HOME/PlumHall/
Options:
 --cvs=<version> : install CVS version e.g. --cvs=CVS002
 --xvs=<version> : install XVS version e.g. --xvs=XVS002
 --lvs=<version> : install CVS version e.g. --lvs=LVS002
 --compiler=<name> : brief compiler name used to create directory  

structure, e.g. gcc, edg, clang, etc
 --PW=<zip password> : zip password for distribution
 --login=<login name> : login name given in download instructions, e.g. techcontactname
 --username=<username> : suffix to user name given in download instructions,  

e.g. techcontactname8345
 --keep : do not delete existing directories before unpacking the distributions.
 --verbose : chatty
 --help : help me if you can…

Note: uses scp to securely copy the distributions from the plumhall2b.com server, zip to unpack the
distribution and md5sum to calculate the MD5 hash.

ftp plumhall2b.com
login: OscarWilde1854@plumhall2b.com
passwd: *********
passive
get installPH.sh or get installPH.bat
get lvs23a-LVS000.tar.gz
get lvs23a-LVS000.tar.gz.md5
get lvs23a-LVS000.zip
get lvs23a-LVS000.zip.md5
…
bye

<Test Suite><PlumHall Release Year>-<Compiler Mnemonic>-c<Standards Year>/

e.g. lvs23a-gcc-c20/

http://plumhall2b.com
http://plumhall2b.com

For example, to create directories for each of the standards years C++17 and C++20, for compilers gcc and
clang:

There are three main points of customization:

 - flags.h for C/C++ version options,
 - compiler-flags.h for compiler-specfifc options and
 - envsuite.sh (envsuite.bat) to customize the execution environment.

Some customization is possible by using envsuite command line options. For example: envsuite.sh
cc=g++-latest sets the version of gcc to use. Type envsuite.sh -h for current arguments. Further
customization requires editing envsuite.sh(.bat)

The envsuite script has been modified to more easily support a standard PlumHall directory structure and
multiple compilers on the command line. The standard directory structure is:

	
where <cc> is gcc or clang, or cl on Windows. The script createDestination.sh is available to create and
populates these default directories, though the installPH scripts do this by default. It takes a command
line argument cc=<gcc | clang | cl> to create different build directories for multiple compiler testing. The
script envsuite and save-setup also take the argument cc=. The scripts take arguments cc=gcc or
cc=gcc-latest to cc=clang-12 as examples.

~/PlumHall/xvs23a-<cc>-c20/ build directory
~/PlumHall/xvs23a source directory
~/PlumHall/xvs23a-<cc>-c20-setup/ setup directory updated by script save-setup

~/PlumHall/lvs23a-<cc>-c20/
~/PlumHall/lvs23a/
~/PlumHall/lvs23a-<cc>-c20-setup/

~/PlumHall/cvs23a-<cc>-c20/
~/PlumHall/cvs23a/
~/PlumHall/cvs23a-<cc>-c20-setup/

installPH.sh --stdyear=17 --stdyear=20 --compiler=gcc --compiler=clang

The file flags.h customizes for C++ standards release version:

The release numbers in flags.h and envsuite MUST Be kept in sync.

compiler-flags.h allows for setting flags specific to a particular compiler. These flags are often set to get
around compile errors which prevent viewing overall results. For example lang.c and lib.c link in relevant
test case object files. If a compile of a particular test fails, none of the results of the other tests can be seen.

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct
settings for your compiler.

Customization of flags.h

Customization of compiler-flags.h

The release numbers in flags.h and envsuite MUST Be kept in sync. Customization of ensuite requires a
detailed reading of the source of the script. Usually ensuite is used to set compiler and linker directories as
required to build.

The build system itself has been enhanced. In prior releases adding a test case required hand editing
multiple different makefiles and scripts. In this release this is no longer required, the makefiles and script
automatically adjust to addition/deletion of test cases.

The build system did not adapt well to the new requirements imposed by C++ modules. The t01a.dir
directory contains all the module test cases. The makefile and build script are customized to build modules
in the style of gcc. At this time there is no support for building modules in the Microsoft cl.exe or clang
styles.

In order to test modules and coroutines version 11 of gcc is required on Linux, and c++latest on Windows.
For example on Linux:

. envsuite cc=g++-11

On Windows install the latest version of cl.exe and ensure that STD=c++latest is set in envsuite.bat.

A number of visualization tools have been added. At the end of each buildmax build the following html
files are created:

Customization of envsuite.sh

 coverage-cxx20.html
 commentary-cxx20-lib.html
 conform-cxx20-lib.html
 report-cxx20.html

The file conform-cxx-lib.html shows a summary of successful tests and those with issues:

The value in the Expected column is the number of test cases, where Expected = Actual + Errors + Faults +
Aborts. The Actual column is the sum of the number of test results that matched expected values/behavior
plus the number of skipped test cases. The value in the Skipped column is the number of skipped test
cases. The value in the Errors column is the sum of the number of test cases that meet one of the following
conditions:

 - One or more unexpected values are returned in the test items.
 - A compile error occurred, when the test file was compiled.
 - An execution error occurred, when the test was executed.

The value in the Abort column is the number of test cases that and abort occurred. The value in the Faults
column is the number of tests that meet one of the following conditions:
 - An uncaught exception occurred when the test was executed.
 - An internal error occurred when the test file was compiled.
 - Unknown or unreported test results.

The links to the .out log file and .cpp source file help to quickly find what the issue is and where.

conform-cxx-lib.html

The log filename is a link to the actual output log of test result summaries for the entire test directory. The
center column shows errors linked to the compiler log file showing compile errors.

The source file is linked to browse the test source file.

t007.out.html

t170.dir/_17624F20.clg.html

The make-commentary script creates an html file (commentary-cxx.html for example) that shows a brief
commentary of the purpose of each test case by folder name and test name:

The make-coverage script generates the html file coverage-xvsxxa.html which shows for each C/C++
release, the Defect Report number, the directory test case file and a brief description of the Defect Report.
This is useful to find which directories and test cases address a particular feature introduced by the Defect
Report.

t170.dir/_17624F20.cpp.html

commentary-cxx-lib.html

The make-report script generates a table showing all files with the associated commentary:

Again the file names are links for convenient browsing of the test case suite. All of these html documents
are produced dynamically from the source as the last steps in the buildmax script.

coverage-cxx.html

report-cxx-lib.html

C++23 Library Features
Feature Paper Addressed Test Cases

Stacktrace library P0881R7
P2301R1

t200.dir/_20213_1.cpp, t200.dir/_20213_2.cpp, t200.dir/
_20213_3.cpp, t200.dir/_20213_4.cpp

<stdatomic.h> P0943R6 negtests/m19.in, t290.dir/_2963p1a.cpp
std::is_scoped_enum P1048R1 t203.dir/_20_15_5_4a.cpp
basic_string::contains(), basic_string_view::contains() P1679R3 t231.dir/_237p1a.cpp
std::to_underlying P1682R3 t203.dir/_20_2_8_1a.cpp
Relaxing requirements for time_point<>::clock P2212R2 t203.dir/_27_7_9_1a.cpp
DR: std::visit() for classes derived from std::variant P2162R2
DR: Conditionally borrowed ranges P2017R1 t244.dir/_2455g1a.cpp
DR: Repairing input range adaptors and
std::counted_iterator P2259R1 t244.dir/_247161a.cpp

Providing size feedback in the Allocator interface P0401R6 t232.dir/_20_10_8_1a.cpp
<spanstream> : string-stream with std::span-based
buffer P0448R4 t225.dir/_29_9_1a.cpp, t225.dir/_29_9_3a.cpp

std::out_ptr(), std::inout_ptr() P1132R8 t203.dir/_20_11_9_1a.cpp
constexpr type_info::operator==() P1328R1 t183.dir/_1861a31.cpp
Iterator pair constructors for std::stack and std::queue P1425R4 t235.dir/_22_6_6_3a.cpp
Non-deduction context for allocators in container
deduction guides P1518R2 t201.dir/_20_123p2a.cpp

ranges::starts_with() and ranges::ends_with() P1659R3
Prohibiting std::basic_string and std::basic_string_view
construction from nullptr P2166R1

t211.dir/_2132a_101.cpp, t211.dir/_2132a_101_c16, t211.dir/
_2132a_101_c8, t211.dir/_2132a_101_c32, t211.dir/_2132a_101_w

std::invoke_r() P2136R3 t203.dir/_20_142a.cpp
Range constructor for std::basic_string_view P1989R2 t216.dir/_29_8_4_4_10a.cpp
Default template arguments for pair's forwarding
constructor P1951R1 t200.dir/_2042p1b.cpp

Remove Garbage Collection and Reachability-Based
Leak Detection (library support) P2186R2 t203.dir/_207_137a1a.cpp and negtests

DR: join_view should join all views of ranges P2328R1 t244.dir/_247111a.cpp
DR: view does not require default_initializable P2325R3 t244.dir/_2441a.cpp
DR: Range adaptor objects bind arguments by value P2281R1 t244.dir/_2472a.cpp
DR: constexpr for std::optional and std::variant P2231R1
DR: std::format() improvements P2216R3 t244.dir/_20201r1g.cpp
DR: lazy_split_view and redesigned split_view P2210R2 t244.dir/_24713a.cpp
zip P2321R2 t244.dir/_247191a.cpp
Heterogeneous erasure overloads for associative
containers P2077R3 t237.dir/_2252a.cpp

std::byteswap() P1272R4 t260.dir/_2654a.cpp
Printing volatile T* P1147R1 t27a.dir/_27751a.cpp

basic_string::resize_and_overwrite() P1072R10
t212.dir/_21335a11.cpp, t212.dir/_21335a11_w.cpp, t212.dir/
_21335a11_c8.cpp, t212.dir/_21335a11_c16.cpp, t212.dir/
_21335a11_c32.cpp,

Monadic operations for std::optional P0798R8 t202.dir/_2065m01.cpp
std::move_only_function P0288R9 t202.dir/_20_14_1742a.cpp
Add a conditional noexcept specification to
std::exchange P2401R0 t290.dir/_2965g_180c.cpp

Require span & basic_string_view to be
TriviallyCopyable P2251R1 t202.dir/_201554.cpp

Clarifying the status of the “C headers” P2340R1 t170.dir/_17p2a.cpp
DR: Fix ranges::istream_view P2432R1 t244.dir/_2465g1n.cpp
DR: Add support for non-const-formattable types to
std::format P2418R2 t170.dir/_17624F20c.cpp

DR: What is a view P2415R2 t244.dir/_24753a.cpp
DR: fixing locale handling in chrono formatters P2372R3 t200.dir/_2020152r1.cpp
DR: Cleaning up integer-class types P2393R1
Contract-based programming p0542r5 t305.dir/_30_33p1a.cpp

7

C++20 Library Features
Feature Paper Addressed Test Cases

std::endian P0463R1 t203.dir/_20_159o1a.cpp
Extending std::make_shared() to support arrays P0674R1 t203.dir/_20_1136o1a.cpp, t203.dir/_20_1136o1a.cpp
Floating-point atomic P0020R6 t290.dir/_2963p1a.cpp

Synchronized buffered (std::basic_osyncstream) P0053R7

t27k.dir/_27_101o1a.cpp, t27k.dir/_27_1021o1a2.cpp, t27k.dir/_27_1021o1a.cpp, t27k.dir/
_27_1021o1b.cpp, t27k.dir/_27_1021o1c.cpp, t27k.dir/_27_1021o1d.cpp, t27k.dir/
_27_1021o1e.cpp, t27k.dir/_27_1022o1a.cpp, t27k.dir/_27_1023o1a.cpp, t27k.dir/
_27_1025o1a.cpp, t27k.dir/_27_102ao1a.cpp, t27k.dir/_27_102o1a.cpp, t27k.dir/
_27_1033o11.cpp

constexpr for <algorithm> and <utility> P0202R3 t251.dir/_2521o11.cpp
More constexpr for <complex> P0415R1 t260.dir/_2626o1a.cpp
Make std::memory_order a scoped enumeration P0439R0 t290.dir/_294o11.cpp
String prefix and suffix checking:
string(_view) ::starts_with/ends_with P0457R2

t211.dir/_21426o_21a_c16.cpp, t211.dir/_21426o_21a_c32.cpp, t211.dir/_21426o_21a.cpp,
t211.dir/_21426o_21a_w.cpp

Library support for operator<=> <compare> P0768R1 t170.dir/_17p2a.cpp, t183.dir/_18_101o1a.cpp
std::remove_cvref P0550R2 t202.dir/_20_152o1a.cpp

[[nodiscard]] in the standard library P0600R1
t212.dir/_2134a_151b_c16.cpp, t212.dir/_2134a_151b_c32.cpp, t212.dir/_2134a_151b_c8.cpp,
t212.dir/_2134a_151b.cpp, t212.dir/_2134a_151b_w.cpp

Using std::move in numeric algorithms P0616R0 t266.dir/_2641Y11a.cpp
Utility to convert a pointer to a raw pointer P0653R2 negtests/m19.in, t202.dir/_20_104o1a.cpp

Atomic std::shared_ptr and std::weak_ptr P0718R2

t170.dir/_17p2a.cpp, t204.dir/_20725g_111.cpp, t204.dir/_20725g_130.cpp, t204.dir/
_20725g_141.cpp, t204.dir/_20725g_160.cpp, t204.dir/_20725g_181.cpp, t204.dir/
_20725g_200.cpp, t204.dir/_20725g_211a2.cpp, t204.dir/_20725g_211a.cpp, t204.dir/
_20725g_230.cpp, t204.dir/_20725g_241.cpp, t204.dir/_20725g_251.cpp, t204.dir/
_20725g_270.cpp, t204.dir/_20725g_281a.cpp, t204.dir/_20725g_281b.cpp, t204.dir/
_20725g_281c.cpp, t204.dir/_20725g_281d.cpp, t204.dir/_20725g_300.cpp, t204.dir/
_20725g_301a.cpp, t204.dir/_20725g_301b.cpp, t204.dir/_20725g_301c.cpp, t204.dir/
_20725g_301d.cpp, t204.dir/_20725g30.cpp, t204.dir/_20725g_310.cpp, t204.dir/
_20725g_331a.cpp, t204.dir/_20725g_331b.cpp, t204.dir/_20725g_331c.cpp, t204.dir/
_20725g_331d.cpp, t204.dir/_20725g_341a.cpp, t204.dir/_20725g_341b.cpp, t204.dir/
_20725g_341c.cpp, t204.dir/_20725g_341d.cpp, t204.dir/_20725g60.cpp, t204.dir/
_20725g71.cpp, t204.dir/_20725g90.cpp

std::span P0122R7 t170.dir/_17512p1a.cpp
Calendar and timezone P0355R7 t204.dir/_20_17p1a.cpp
<version> P0754R2 t180.dir/_1831p1a.cpp
Comparing unordered containers P0809R0 t225.dir/_2227p1a.cpp
ConstexprIterator requirements P0858R0 t231.dir/_2331p1a.cpp

std::basic_string::reserve() should not shrink P0966R1
t170.dir/_17p2a.cpp, t210.dir/_21324p1a_c16.cpp, t210.dir/_21324p1a_c32.cpp, t210.dir/
_21324p1a_c8.cpp, t210.dir/_21324p1a.cpp, t210.dir/_21324p1a_w.cpp

Atomic Compare-And-Exchange with padding bits P0528R3 t290.dir/_2961p1a.cpp
std::atomic_ref P0019R8 t290.dir/_298p1a.cpp
contains() member function of associative
containers, e.g. std::map::contains() P0458R2 t237.dir/_22444a.cpp

DR: Guaranteed copy elision for piecewise
construction P0475R1 t201.dir/_20_134p1a.cpp

std::bit_cast() P0476R2 t215.dir/_216p1a.cpp
Integral power-of-2 operations:
std::bit_ceil(), std::bit_floor(), std::bit_width(),
std::has_single_bit()

P0556R3 P1956R1 t215.dir/_2162p1a.cpp

Improving the return value of erase-like algorithms P0646R1 t225.dir/_22391p1a.cpp
std::destroying_delete P0722R3 t182.dir/_18622m1b_s.cpp
std::is_nothrow_convertible P0758R1 t203.dir/_20_152p1b.cpp
Add std::shift_left/right to <algorithm> P0769R2 t258.dir/_256_14p1a.cpp
Constexpr for std::swap() and swap related
functions P0879R0 t258.dir/_16443a.cpp, t258.dir/_2573a.cpp, t258.dir/_28711a.cpp, t258.dir/_2872a.cpp, t258.dir/

_28771a.cpp, t258.dir/_2877a.cpp
std::type_identity P0887R1 t203.dir/_20_153a.cpp
Concepts library P0898R3 t305.dir/_30_31p1a.cpp
constexpr comparison operators for std::array P1023R0 t225.dir/_2227p1a.cpp
std::unwrap_ref_decay and std::unwrap_reference P0318R1 t202.dir/_20_43_4a.cpp, t203.dir/_2042p1a.cpp, t203.dir/_20_4_3a.cpp
std::bind_front() P0356R5 t170.dir/_17_12_14p1a.cpp
std::reference_wrapper for incomplete types P0357R3 t203.dir/_20_146a.cpp

Fixing operator>>(basic_istream&, CharT*) P0487R1
t275.dir/_27611Y11.cpp#if, t276.dir/_276123Y0_12.cpp, t276.dir/_276123Y0_12.cpp#if, t276.dir/
_276123Y14.cpp#if, t276.dir/_276123Y21.cpp, t276.dir/_276123Y21.cpp#if, t276.dir/
_276123Y22.cpp#if, t27k.dir/_2774p1a.cpp

Library support for char8_t P0482R6 t160.dir/_1723p1a.cpp, t170.dir/_1723p1a.cpp, t170.dir/_17p2a.cpp
Utility functions to implement uses-allocator
construction P0591R4 t203.dir/_20_1082p1a.cpp

DR: std::variant and std::optional should propagate
copy/move triviality P0602R4 t190.dir/_1963p1a.cpp

A sane std::variant converting constructor P0608R3 t203.dir/_20733p1a.cpp
std::function's move constructor should be
noexcept P0771R1 t202.dir/_20_14_1732a.cpp

The One Ranges Proposal P0896R4 t305.dir/_30_32p1a.cpp
Heterogeneous lookup for unordered containers P0919R3 P1690R1 t180.dir/_1854p1a.cpp
<chrono> zero(), min(), and max() should be
noexcept P0972R0 t300.dir/_27_2_1a.cpp

constexpr in std::pointer_traits P1006R1 t203.dir/_20_1032p1a.cpp

5

std::assume_aligned() P1007R3 t200.dir/_20_10p1a.cpp
Smart pointer creation with default initialization
(e.g. make_unique_for_overwrite)

P1020R1
P1973R1 t202.dir/_20_11_142a.cpp

Misc constexpr bits P1032R1 t160.dir/_7_7_1a.cpp, t200.dir/_2042p1a.cpp
Remove comparison operators of std::span P1085R2 t180.dir/_1872p1a.cpp
Make stateful allocator propagation more
consistent for operator+(basic_string) P1165R1 t170.dir/_17331p1a.cpp

Consistent container erasure, e.g.
std::erase(std::vector), or std::erase_if(std::map) P1209R0 P1115R3 t200.dir/_20p1b.cpp, t215.dir/_2132p1b.cpp

Standard library header units P1502R1 t021a.dir/_16_5_1_2m.cpp
polymorphic_allocator<> as a vocabulary type P0339R6 t203.dir/_20_1232a.cpp

std::execution::unseq P1001R2 t204.dir/_20_18_2a.cpp, t204.dir/_20_182k1a.cpp, t205.dir/_209p1a.cpp, t266.dir/
_268_11p1a.cpp

std::lerp() and std::midpoint() P0811R3 t251.dir/_251016a.cpp
Usability enhancements for std::span P1024R3 t190.dir/_19536r1a.cpp

DR: Make create_directory() intuitive P1164R1
t27k.dir/_27_10_154m1a.cpp, t27k.dir/_27_11_14_39p1a.cpp, t27k.dir/_27_11_143p1b.cpp,
t27k.dir/_27_11_144p1a.cpp, t27k.dir/_27_11_147o11.cpp, t27k.dir/_27_11_147p1a.cpp, t27k.dir/
_27_111o1a.cpp

std::ssize() and unsigned extent for std::span P1227R2 t180.dir/_187202a.cpp
Traits for (un)bounded arrays P1357R1 t202.dir/_20_102k11.cpp, t202.dir/_2092g1a_s.cpp
std::to_array() P0325R4 t244.dir/_248k11a.cpp
Efficient access to std::basic_stringbuf’s buffer P0408R7 t27k.dir/_27_1023o2a.cpp
Layout-compatibility and pointer-interconvertibility
traits P0466R5 t203.dir/_20_157p1a.cpp

Bit operations: std::
rotl(), rotr(), countl_zero(), countl_one(),
countr_zero(), countr_one(), popcount()

P0553R4 t260.dir/_2652a.cpp

Mathematical constants P0631R8 t240.dir/_24r1a.cpp
Text formatting P0645R10 t200.dir/_201r1e.cpp
std::stop_token and std::jthread P0660R10 t300.dir/_32321a.cpp
constexpr std::allocator and related utilities P0784R7 t215.dir/2S9, 681a.cpp
constexpr std::string P0980R1 t201.dir/_20_12_13k1a.cpp, t210.dir/_2131m1b.cpp
constexpr std::vector P1004R2 t200.dir/_201r1b.cpp

Input range adaptors P1035R7
t244.dir/_247101a.cpp, t244.dir/_247121a.cpp, t244.dir/_247141a.cpp, t244.dir/_247151a.cpp,
t244.dir/_247161a.cpp, t244.dir/_247171a.cpp, t244.dir/_247181a.cpp, t244.dir/_24721a.cpp,
t244.dir/_24781a.cpp, t244.dir/_24791a.cpp

constexpr std::invoke() and related utilities P1065R2 t201.dir/_20_14_5a.cpp
Atomic waiting and notifying,
std::counting_semaphore, std::latch and
std::barrier

P1135R6 t290.dir/_321821a.cpp, t290.dir/_32832a.cpp, t290.dir/_32731a.cpp

std::source_location P1208R6 t160.dir/_161p4b.cpp, t170.dir/_178r1a.cpp, t170.dir/_178r1a.cpp t170.dir/_178r1a.cpp, t170.dir/
_178r1a.cpp

Adding <=> to the standard library P1614R2 t280.dir/_28_1212g20.cpp, t280.dir/_28_1222g20.cpp
constexpr default constructor of std::atomic and
std::atomic_flag P0883R2 t170.dir/_17p2a.cpp

constexpr for numeric algorithms P1645R1
t205.dir/_2681k09.cpp, t266.dir/_2641Y11a.cpp, t266.dir/_2642Y11a.cpp, t266.dir/
_2643Y21a.cpp, t266.dir/_2644Y41a.cpp, t266.dir/_268_10k11a.cpp, t266.dir/_268_12m11.cpp,
t266.dir/_2683k11.cpp, t266.dir/_2684k11.cpp, t266.dir/_2687k11.cpp, t266.dir/_2689k11.cpp

Safe integral comparisons P0586R2 t201.dir/_2027a.cpp

6

C++17 Library Features
Feature Paper Addressed Test Cases

std::void_t N3911 negtests/m19.in, t202.dir/_20_1076k1_22.cpp

std::uncaught_exceptions() N4259
t170.dir/_17p2a.cpp, t170.dir/_17p2a.cpp#include, t183.dir/_1874a11b.cpp,
t183.dir/_1874a11.cpp

std::size(), std::empty() and
std::data() N4280

t170.dir/_17512p1a.cpp, t170.dir/_17512p1a.cpp#if, t170.dir/
_17512p1a.cpp#include, t180.dir/_1872p1a.cpp, t180.dir/_1872p1a.cpp, t180.dir/
_1872p1a.cpp#include, t180.dir/_1872p1a.cppvoid, t190.dir/_19536r1a.cpp,
t190.dir/_19536r1a.cpp//, t225.dir/_22731p1a.cpp

Improving std::pair and std::tuple N4387
negtests/m19.in, t200.dir/_2032k51.cpp, t200.dir/_2042k51.cpp, t202.dir/
_20521k1a.cpp, t202.dir/_20521k1b.cpp, t202.dir/_20521k1c.cpp

std::bool_constant N4389 t202.dir/_20_102k02.cpp

std::shared_mutex (untimed) N4508

t300.dir/_304141k10.cpp, t300.dir/_304141k_122a_s.cpp, t300.dir/
_304141k_122b_s.cpp, t300.dir/_304141k_123a.cpp, t300.dir/
_304141k_131a.cpp, t300.dir/_304141k_131b.cpp, t300.dir/_304141k_141a.cpp,
t300.dir/_304141k_151.cpp, t300.dir/_304141k22.cpp, t300.dir/
_304141k52a_s.cpp, t300.dir/_304141k52b_s.cpp, t300.dir/_304141k52c_s.cpp,
t300.dir/_304141k52d_s.cpp, t300.dir/_304141k53a.cpp, t300.dir/
_304141k53b.cpp, t300.dir/_304141k61a.cpp, t300.dir/_304141k71a.cpp, t300.dir/
_304141k81.cpp, t300.dir/_304151k10.cpp, t300.dir/_304151k_122a_s.cpp,
t300.dir/_304151k_122b_s.cpp, t300.dir/_304151k_123a.cpp, t300.dir/
_304151k_131a.cpp, t300.dir/_304151k_141a.cpp, t300.dir/_304151k_151.cpp,
t300.dir/_304151k21a.cpp, t300.dir/_304151k21b.cpp, t300.dir/_304151k21c.cpp,
t300.dir/_304151k21d.cpp, t300.dir/_304151k21h.cpp, t300.dir/_304151k22.cpp,
t300.dir/_304151k52a_s.cpp, t300.dir/_304151k52b_s.cpp, t300.dir/
_304151k52c_s.cpp, t300.dir/_304151k52d_s.cpp, t300.dir/_304151k53a.cpp,
t300.dir/_304151k53b.cpp, t300.dir/_304151k61a.cpp, t300.dir/_304151k71a.cpp,
t300.dir/_304151k81.cpp, t300.dir/_30421k01c.cpp, t300.dir/_30421k01d.cpp,
t300.dir/_30421k01e.cpp, t300.dir/_30421k01f.cpp, t300.dir/_30421k10e_s.cpp,
t300.dir/_30421k10f_s.cpp, t301.dir/_304141k10.cpp, t301.dir/
_304141k_122a_s.cpp, t301.dir/_304141k_122b_s.cpp, t301.dir/
_304141k_131a.cpp, t301.dir/_304141k_131b.cpp, t301.dir/_304141k_141a.cpp,
t301.dir/_304141k_151.cpp, t301.dir/_304141k22.cpp, t301.dir/
_304141k52a_s.cpp, t301.dir/_304141k52b_s.cpp, t301.dir/_304141k52c_s.cpp,
t301.dir/_304141k52d_s.cpp, t301.dir/_304141k53a.cpp, t301.dir/
_304141k53b.cpp, t301.dir/_304141k61a.cpp, t301.dir/_304141k71a.cpp, t301.dir/
_304141k81.cpp, t301.dir/_304151k10_x.cpp, t301.dir/_304151k_122a_s_x.cpp,
t301.dir/_304151k_122b_s_x.cpp, t301.dir/_304151k_123a_x.cpp, t301.dir/
_304151k_131a_x.cpp, t301.dir/_304151k_141a_x.cpp, t301.dir/
_304151k21a_x.cpp, t301.dir/_304151k21b_x.cpp, t301.dir/_304151k21c_x.cpp,
t301.dir/_304151k21d_x.cpp, t301.dir/_304151k21h_x.cpp, t301.dir/
_304151k22_x.cpp, t301.dir/_304151k52a_s_x.cpp, t301.dir/
_304151k52b_s_x.cpp, t301.dir/_304151k52c_s_x.cpp, t301.dir/
_304151k52d_s_x.cpp, t301.dir/_304151k53a_x.cpp, t301.dir/_304151k53b_x.cpp,
t301.dir/_304151k61a_x.cpp, t301.dir/_304151k71a_x.cpp, t301.dir/
_30421k01c_s.cpp, t301.dir/_30421k01d_s.cpp, t301.dir/_30421k01e_s.cpp,
t301.dir/_30421k01f_s.cpp

Type traits variable templates P0006R0
t190.dir/_195k2_99.cpp//, t200.dir/_2041k21.cpp, t202.dir/_20_102k11.cpp,
t202.dir/_209_10k11.cpp, t203.dir/_20_152k11.cpp, t203.dir/_20771k11.cpp

Logical operator type traits P0013R1 t201.dir/_20_138k1a.cpp

Standardization of Parallelism TS P0024R2

t204.dir/_20_182k1a.cpp, t205.dir/_209_12k01_s.cpp, t205.dir/_209_12k02.cpp,
t205.dir/_209_12k03.cpp, t205.dir/_209_12k04.cpp, t205.dir/_253k0_100.cpp,
t205.dir/_253k0_101.cpp, t205.dir/_253k0_10a.cpp, t205.dir/_253k0_11.cpp,
t205.dir/_253k0_12.cpp, t205.dir/_253k0_13.cpp, t205.dir/_253k0_14.cpp, t205.dir/
_253k0_15.cpp, t205.dir/_253k0_16a.cpp, t205.dir/_253k0_17b.cpp, t205.dir/
_253k0_18.cpp, t205.dir/_253k0_19.cpp, t205.dir/_253k01.cpp, t205.dir/
_253k0_20.cpp, t205.dir/_253k0_21.cpp, t205.dir/_253k0_22.cpp, t205.dir/
_253k0_23.cpp, t205.dir/_253k0_24.cpp, t205.dir/_253k0_25.cpp, t205.dir/
_253k0_26.cpp, t205.dir/_253k0_27.cpp, t205.dir/_253k0_28.cpp, t205.dir/
_253k0_29.cpp, t205.dir/_253k02a.cpp, t205.dir/_253k0_30.cpp, t205.dir/
_253k0_31.cpp, t205.dir/_253k0_32.cpp, t205.dir/_253k0_33.cpp, t205.dir/
_253k0_34.cpp, t205.dir/_253k0_35.cpp, t205.dir/_253k0_36.cpp, t205.dir/
_253k0_37.cpp, t205.dir/_253k0_38.cpp, t205.dir/_253k0_39.cpp, t205.dir/
_253k03a.cpp, t205.dir/_253k0_40.cpp, t205.dir/_253k0_41.cpp, t205.dir/
_253k0_42.cpp, t205.dir/_253k0_43.cpp, t205.dir/_253k0_44.cpp, t205.dir/
_253k0_45.cpp, t205.dir/_253k0_46.cpp, t205.dir/_253k0_47.cpp, t205.dir/
_253k0_48.cpp, t205.dir/_253k0_49.cpp, t205.dir/_253k04.cpp, t205.dir/
_253k0_50.cpp, t205.dir/_253k0_51.cpp, t205.dir/_253k0_52.cpp, t205.dir/
_253k0_53.cpp, t205.dir/_253k0_54.cpp, t205.dir/_253k0_55.cpp, t205.dir/
_253k0_56.cpp, t205.dir/_253k0_57.cpp, t205.dir/_253k0_58.cpp, t205.dir/
_253k0_59.cpp, t205.dir/_253k05b.cpp, t205.dir/_253k0_60.cpp, t205.dir/
_253k0_61.cpp, t205.dir/_253k0_62.cpp, t205.dir/_253k0_63.cpp, t205.dir/
_253k0_64.cpp, t205.dir/_253k0_65.cpp, t205.dir/_253k0_66.cpp, t205.dir/
_253k0_67.cpp, t205.dir/_253k0_68.cpp, t205.dir/_253k0_69.cpp, t205.dir/
_253k06.cpp, t205.dir/_253k0_70.cpp, t205.dir/_253k0_71.cpp, t205.dir/
_253k0_72.cpp, t205.dir/_253k0_73.cpp, t205.dir/_253k0_74.cpp, t205.dir/
_253k0_75.cpp, t205.dir/_253k0_76.cpp, t205.dir/_253k0_77.cpp, t205.dir/
_253k0_78.cpp, t205.dir/_253k0_79.cpp, t205.dir/_253k07.cpp, t205.dir/
_253k0_80.cpp, t205.dir/_253k0_81.cpp, t205.dir/_253k0_82.cpp, t205.dir/
_253k0_83.cpp, t205.dir/_253k0_84.cpp, t205.dir/_253k0_85.cpp, t205.dir/
_253k0_86.cpp, t205.dir/_253k0_87.cpp, t205.dir/_253k0_88.cpp, t205.dir/
_253k0_89.cpp, t205.dir/_253k08a.cpp, t205.dir/_253k08.cpp, t205.dir/
_253k0_90.cpp, t205.dir/_253k0_91.cpp, t205.dir/_253k0_92.cpp, t205.dir/
_253k0_93.cpp, t205.dir/_253k0_94.cpp, t205.dir/_253k0_95.cpp, t205.dir/
_253k0_96.cpp, t205.dir/_253k0_97.cpp, t205.dir/_253k0_98.cpp, t205.dir/
_253k0_99.cpp, t205.dir/_253k09.cpp, t205.dir/_2681k0_10.cpp, t205.dir/
_2681k0_11.cpp, t205.dir/_2681k0_13.cpp, t205.dir/_2681k0_14.cpp, t205.dir/
_2681k0_15.cpp, t205.dir/_2681k0_16.cpp, t205.dir/_2681k0_17.cpp, t205.dir/
_2681k0_18.cpp, t205.dir/_2681k0_19.cpp, t205.dir/_2681k01.cpp, t205.dir/
_2681k02.cpp, t205.dir/_2681k03.cpp, t205.dir/_2681k04.cpp, t205.dir/
_2681k06.cpp, t205.dir/_2681k07.cpp, t205.dir/_2681k08.cpp, t205.dir/
_2681k09.cpp, t251.dir/_253k05a.cpp

std::clamp() P0025R0 t258.dir/_2558k21.cpp
Hardware interference size P0154R1 t183.dir/_1864k11.cpp, t183.dir/_1864k11.cpp
(nothrow-)swappable traits P0185R1 t170.dir/_17p1b.cpp

File system library P0218R1

t27k.dir/_27_10_10k1a.cpp, t27k.dir/_27_10_12k1a.cpp, t27k.dir/
_27_10_13k1a.cpp, t27k.dir/_27_10_14k1a.cpp, t27k.dir/_27_107k1a.cpp, t27k.dir/
_27_108k1a.cpp, t27k.dir/_27_108m1a.cpp, t27k.dir/_27_109k1a.cpp, t27k.dir/
_27_111o1a.cpp

std::string_view N3921
P0220R1

negtests/m19.in, t170.dir/_17612kt_14.cpp, t201.dir/_20_12_13k1a.cpp, t201.dir/
_20_129k31.cpp, t201.dir/_20_138k1a.cpp, t201.dir/_20_15_87.cpp, t201.dir/
_2062k1a.cpp, t201.dir/_2063k1a.cpp, t201.dir/_207k1a.cpp, t201.dir/
_2093k1a.cpp, t202.dir/_20525k11.cpp, t216.dir/_214k1a_c16.cpp, t216.dir/
_214k1a_c32.cpp, t216.dir/_214k1a_c8.cpp, t216.dir/_214k1a.cpp, t216.dir/
_214k1a_w.cpp, t251.dir/_253_13k81.cpp, t251.dir/_254_12k21.cpp

3

std::any P0220R1

negtests/m19.in, t170.dir/_17612kt_14.cpp, t201.dir/_20_12_13k1a.cpp, t201.dir/
_20_129k31.cpp, t201.dir/_20_138k1a.cpp, t201.dir/_20_15_87.cpp, t201.dir/
_2062k1a.cpp, t201.dir/_2063k1a.cpp, t201.dir/_207k1a.cpp, t201.dir/
_2093k1a.cpp, t202.dir/_20525k11.cpp, t216.dir/_214k1a_c16.cpp, t216.dir/
_214k1a_c32.cpp, t216.dir/_214k1a_c8.cpp, t216.dir/_214k1a.cpp, t216.dir/
_214k1a_w.cpp, t251.dir/_253_13k81.cpp, t251.dir/_254_12k21.cpp

std::optional P0220R1

negtests/m19.in, t170.dir/_17612kt_14.cpp, t201.dir/_20_12_13k1a.cpp, t201.dir/
_20_129k31.cpp, t201.dir/_20_138k1a.cpp, t201.dir/_20_15_87.cpp, t201.dir/
_2062k1a.cpp, t201.dir/_2063k1a.cpp, t201.dir/_207k1a.cpp, t201.dir/
_2093k1a.cpp, t202.dir/_20525k11.cpp, t216.dir/_214k1a_c16.cpp, t216.dir/
_214k1a_c32.cpp, t216.dir/_214k1a_c8.cpp, t216.dir/_214k1a.cpp, t216.dir/
_214k1a_w.cpp, t251.dir/_253_13k81.cpp, t251.dir/_254_12k21.cpp

Polymorphic memory resources P0220R1

negtests/m19.in, t170.dir/_17612kt_14.cpp, t201.dir/_20_12_13k1a.cpp, t201.dir/
_20_129k31.cpp, t201.dir/_20_138k1a.cpp, t201.dir/_20_15_87.cpp, t201.dir/
_2062k1a.cpp, t201.dir/_2063k1a.cpp, t201.dir/_207k1a.cpp, t201.dir/
_2093k1a.cpp, t202.dir/_20525k11.cpp, t216.dir/_214k1a_c16.cpp, t216.dir/
_214k1a_c32.cpp, t216.dir/_214k1a_c8.cpp, t216.dir/_214k1a.cpp, t216.dir/
_214k1a_w.cpp, t251.dir/_253_13k81.cpp, t251.dir/_254_12k21.cpp

Mathematical special functions P0226R1

t266.dir/_26_10_10k11.cpp, t266.dir/_26_10_11k11.cpp, t266.dir/
_26_10_12k11.cpp, t266.dir/_26_10_13k11.cpp, t266.dir/_26_10_14k11.cpp,
t266.dir/_26_10_15k11.cpp, t266.dir/_26_10_16k11.cpp, t266.dir/
_26_10_17k11.cpp, t266.dir/_26_10_18k11.cpp, t266.dir/_26_10_19k11.cpp,
t266.dir/_26_101k11.cpp, t266.dir/_26_10_20k11.cpp, t266.dir/_26_10_21k11.cpp,
t266.dir/_26_102k11.cpp, t266.dir/_26_103k11.cpp, t266.dir/_26_104k11.cpp,
t266.dir/_26_105k11.cpp, t266.dir/_26_106k11.cpp, t266.dir/_26_107k11.cpp,
t266.dir/_26_108k11.cpp, t266.dir/_26_109k11.cpp

C++17 should refer to C11
instead of C99 P0063R3 t200.dir/_20_10_10m1a.cpp, t203.dir/_20_10_11m1a.cpp

Splicing Maps and Sets P0083R3 t237.dir/_23571m0_99.cpp
std::variant P0088R3 negtests/m19.in, t203.dir/_2073m1a.cpp
std::make_from_tuple() P0209R2 t202.dir/_20535m21.cpp
std::has_unique_object_represen
tations P0258R2 t202.dir/_20_1543mt_42.cpp

std::gcd() and std::lcm() P0295R0 t266.dir/_268_13m11.cpp, t266.dir/_268_14m11.cpp

std::not_fn P0005R4
P0358R1 t201.dir/_20_129k31.cpp

Elementary string conversions,
including FP (Floating-Point)
values support

P0067R5 t202.dir/_2028m1a.cpp, t202.dir/_2029m1a.cpp

std::shared_ptr and std::weak_ptr
with array support P0414R2

std::scoped_lock P0156R2

t300.dir/_304141k_123a.cpp, t301.dir/_304141k10.cpp, t301.dir/
_304141k_122a_s.cpp, t301.dir/_304141k_122b_s.cpp, t301.dir/
_304141k_131a.cpp, t301.dir/_304141k_131b.cpp, t301.dir/_304141k_141a.cpp,
t301.dir/_304141k_151.cpp, t301.dir/_304141k22.cpp, t301.dir/
_304141k52a_s.cpp, t301.dir/_304141k52b_s.cpp, t301.dir/_304141k52c_s.cpp,
t301.dir/_304141k52d_s.cpp, t301.dir/_304141k53a.cpp, t301.dir/
_304141k53b.cpp, t301.dir/_304141k61a.cpp, t301.dir/_304141k71a.cpp, t301.dir/
_304141k81.cpp, t301.dir/_304151k10_x.cpp, t301.dir/_304151k_122a_s_x.cpp,
t301.dir/_304151k_122b_s_x.cpp, t301.dir/_304151k_123a_x.cpp, t301.dir/
_304151k_131a_x.cpp, t301.dir/_304151k_141a_x.cpp, t301.dir/
_304151k21a_x.cpp, t301.dir/_304151k21b_x.cpp, t301.dir/_304151k21c_x.cpp,
t301.dir/_304151k21d_x.cpp, t301.dir/_304151k21h_x.cpp, t301.dir/
_304151k22_x.cpp, t301.dir/_304151k52a_s_x.cpp, t301.dir/
_304151k52b_s_x.cpp, t301.dir/_304151k52c_s_x.cpp, t301.dir/
_304151k52d_s_x.cpp, t301.dir/_304151k53a_x.cpp, t301.dir/_304151k53b_x.cpp,
t301.dir/_304151k61a_x.cpp, t301.dir/_304151k71a_x.cpp, t301.dir/
_30421k01c_s.cpp, t301.dir/_30421k01d_s.cpp, t301.dir/_30421k01e_s.cpp,
t301.dir/_30421k01f_s.cpp, t301.dir/_30421k31c_s.cpp, t301.dir/_30442m01a.cpp,
t301.dir/_30442m01b.cpp, t301.dir/_30442m10a_s.cpp, t301.dir/
_30442m10b_s.cpp, t301.dir/_30442m10c_s.cpp, t301.dir/_30442m10d_s.cpp,
t301.dir/_30442m20.cpp, t301.dir/_30442m31.cpp, t301.dir/_30442m52.cpp,
t301.dir/_30442m81.cpp

std::byte P0298R3 t180.dir/_1821m1a.cpp
std::is_aggregate LWG2911 t202.dir/_20_152mt_42_s.cpp

4

C++14 Library Features
Feature Paper Addressed Notes

constexpr for <complex> N3302 t260.dir/_2661i1a.cpp
Transparent operator functors N3421 t202.dir/_2094i81a.cpp
std::result_of and SFINAE N3462 t202.dir/_20_1076i09.cpp
constexpr for <chrono> N3469 t203.dir/_20_122i1a.cpp
constexpr for <array> N3470 t230.dir/_23321i1b.cpp

constexpr for <initializer_list>, <utility> and <tuple>N3471

negtests/m19.in, t200.dir/_2022i1_s.cpp, t200.dir/_2023i18a.cpp, t200.dir/
_2023i18b.cpp, t200.dir/_2023i18c.cpp, t200.dir/_2023i1a.cpp, t200.dir/
_2032i21a.cpp, t200.dir/_2032i21b.cpp, t200.dir/_2032i21.cpp, t202.dir/
_20427i1a.cpp

Improved std::integral_constant N3545 t202.dir/_20_103i07.cpp
User-defined literals for <chrono> and <string> N3642 t203.dir/_20_1258i1a.cpp, t217.dir/_217i1a.cpp
Null forward iterators N3644
std::quoted N3654 t27e.dir/_2776i1a_s.cpp
std::make_unique N3656 t203.dir/_20814i11.cpp
Heterogeneous associative lookup N3657 t203.dir/_2094i81b.cpp
std::integer_sequence N3658 t202.dir/_2051i01.cpp

std::shared_timed_mutex N3659

t300.dir/_304141k10.cpp, t300.dir/_304141k_122a_s.cpp, t300.dir/
_304141k_122b_s.cpp, t300.dir/_304141k_123a.cpp, t300.dir/
_304141k_131a.cpp, t300.dir/_304141k_131b.cpp, t300.dir/_304141k_141a.cpp,
t300.dir/_304141k_151.cpp, t300.dir/_304141k22.cpp, t300.dir/
_304141k52a_s.cpp, t300.dir/_304141k52b_s.cpp, t300.dir/_304141k52c_s.cpp,
t300.dir/_304141k52d_s.cpp, t300.dir/_304141k53a.cpp, t300.dir/
_304141k53b.cpp, t300.dir/_304141k61a.cpp, t300.dir/_304141k71a.cpp, t300.dir/
_304141k81.cpp, t300.dir/_304151k10.cpp, t300.dir/_304151k_122a_s.cpp,
t300.dir/_304151k_122b_s.cpp, t300.dir/_304151k_123a.cpp, t300.dir/
_304151k_131a.cpp, t300.dir/_304151k_141a.cpp, t300.dir/_304151k_151.cpp,
t300.dir/_304151k21a.cpp, t300.dir/_304151k21b.cpp, t300.dir/_304151k21c.cpp,
t300.dir/_304151k21d.cpp, t300.dir/_304151k21h.cpp, t300.dir/_304151k22.cpp,
t300.dir/_304151k52a_s.cpp, t300.dir/_304151k52b_s.cpp, t300.dir/
_304151k52c_s.cpp, t300.dir/_304151k52d_s.cpp, t300.dir/_304151k53a.cpp,
t300.dir/_304151k53b.cpp, t300.dir/_304151k61a.cpp, t300.dir/_304151k71a.cpp,
t300.dir/_304151k81.cpp, t300.dir/_30421k01c.cpp, t300.dir/_30421k01d.cpp,
t300.dir/_30421k01e.cpp, t300.dir/_30421k01f.cpp, t300.dir/_30421k10e_s.cpp,
t300.dir/_30421k10f_s.cpp, t301.dir/_304141k10.cpp, t301.dir/
_304141k_122a_s.cpp, t301.dir/_304141k_122b_s.cpp, t301.dir/
_304141k_131a.cpp, t301.dir/_304141k_131b.cpp, t301.dir/_304141k_141a.cpp,
t301.dir/_304141k_151.cpp, t301.dir/_304141k22.cpp, t301.dir/
_304141k52a_s.cpp, t301.dir/_304141k52b_s.cpp, t301.dir/_304141k52c_s.cpp,
t301.dir/_304141k52d_s.cpp, t301.dir/_304141k53a.cpp, t301.dir/
_304141k53b.cpp, t301.dir/_304141k61a.cpp, t301.dir/_304141k71a.cpp, t301.dir/
_304141k81.cpp, t301.dir/_304151k10_x.cpp, t301.dir/_304151k_122a_s_x.cpp,
t301.dir/_304151k_122b_s_x.cpp, t301.dir/_304151k_123a_x.cpp, t301.dir/
_304151k_131a_x.cpp, t301.dir/_304151k_141a_x.cpp, t301.dir/
_304151k21a_x.cpp, t301.dir/_304151k21b_x.cpp, t301.dir/_304151k21c_x.cpp,
t301.dir/_304151k21d_x.cpp, t301.dir/_304151k21h_x.cpp, t301.dir/
_304151k22_x.cpp, t301.dir/_304151k52a_s_x.cpp, t301.dir/
_304151k52b_s_x.cpp, t301.dir/_304151k52c_s_x.cpp, t301.dir/
_304151k52d_s_x.cpp, t301.dir/_304151k53a_x.cpp, t301.dir/_304151k53b_x.cpp,
t301.dir/_304151k61a_x.cpp, t301.dir/_304151k71a_x.cpp, t301.dir/
_30421k01c_s.cpp, t301.dir/_30421k01d_s.cpp, t301.dir/_30421k01e_s.cpp,
t301.dir/_30421k01f_s.cpp

std::exchange N3668 t200.dir/_2023i11.cpp

fixing constexpr member functions without constN3669 t202.dir/_2062i_381.cpp, t202.dir/_2092g1a_s.cpp//, t230.dir/_23321i1a.cpp,
t260.dir/_2661i1a.cpp

std::get<T>() N3670
negtests/m19.in, t200.dir/_2032i21a.cpp, t200.dir/_2032i21b.cpp, t200.dir/
_2032i21.cpp, t202.dir/_20426i_101a.cpp, t202.dir/_20426i_101.cpp, t202.dir/
_20426i81a.cpp, t202.dir/_20426i81.cpp

Dual-Range std::equal, std::is_permutation, std::mismatchN3671 t251.dir/_252_12g11a.cpp, t251.dir/_252_12g11b.cpp, t251.dir/_252_12i1a.cpp,
t251.dir/_252_12i1b.cpp

2

C++ 11
Feature Paper Addressed C++ standard Comments

Type Traits

Garbage Collection and Reachability-
Based Leak Detection (library
support)

N1836 N2240
N2244 N2255
N2342 N2984
N3142

Money, Time and hex/float
manipulators N2071 N2072

Disallowing COW (copy on write)
string N2688

1

There is a new script runtest.sh(.bat) which given a test identifier will find that file in the source
directory and execute just that test. It is useful for debugging test cases. Here is an example of usage in
Visual Studio:

Please let me know your thoughts and suggestions: doug@plumhall2b.com.

Historical Versions

New in lvs19a:

Each subdirectory, such as t170.dir, provided one large file, such as t170.cpp, which collected
together all or most of the tests in this section. We have dropped support for the LibSuite++ feature of
providing files such as t170.cpp. We have reluctantly concluded that we have no way of implementing this
feature.

New in lvs18a:

 In flags.h, we have added a new choice: choose between CXX03, CXX11, CXX14, CXX17, and
CXXWP (“working paper”). Contrary to our expectations a few years ago, we have to maintain CXX17
and CXXWP, because there are changes that only apply to CXXWP.

New in lvs17a:

The requirements of ISO/IEC editors have caused the chapters (“clauses”) in the C++ Standard to be re-
numbered. What was originally clause 17 is now clause 20, etc. Fortunately, the offset is a constant
(three).

For now, only the members of the C++ standards committee are affected by this change, but eventually
everyone will see this offset.

Plum Hall has not changed the testcase numbering system; those of you consulting the most recent drafts
will need to subtract three from the clause number.

WG21 has changed the name result_of to invoke_result (and result_of_t to
invoke_result_t). The new testcases (the “m” cases) use the new name, but we have otherwise
changed the name in “flags.h ”.

In view of the complications running dst-win/buildmax.bat, Plum Hall .has put t007 last in
buildmax.bat.

New in lvs16a:

We have placed all of the 2016 target-dirs into a folder called “ph16”.

In flags.h, we have added a new choice: choose between CXX03, CXX11, CXX14, and CXXWP
(“working paper”). In a few years, CXXWP will become CXX17.

In the various makefiles, we have added the section number (for documentation only), just so you can
see it as the commands go past on the screen. Also, buildmax[.bat] will build the t007.dir tests
first. The Unix/Linux scripts in dst-ix seem to work fine, but the Windows scripts may require some manual
intervention. Here at Plum Hall we wait a minute or two before concluding that a test is hung, kill the
batch file, and (in a separate window) edit the batch file to “remark” the lines that passed already.
Sometimes, six or seven iterations are needed to complete the t007.dir tests.

In dst-win, the envsuite.bat file calls a separate compiler-setup.bat file.

Approximately 180 pages of new specifications were added during the Jacksonville 2018 meeting: Special
Math, Library Fundamentals, Parallelism, and File System.

New in lvs15a:

This release, lvs15a, implements all of C++14.

All the negtests (from whatever clause they originally appear in) have been put into m19.in.

New in lvs14a:

If there are no “dots” in the filename, the txtchk command will expect to find its checksums in a
“.txtchk” file, so it can now be invoked as simply
	 txtchk -f lvs18a

The lvs14a release is mostly a bug-fix release; no new cases have been added above lvs13a. In
“flags.h” there is now a choice between CXX03, CXX11, and CXX14 (but don’t use CXX14 yet).

We have revised the scoring method in conform/util.c:report(), so that for the “big file”
(“tnnn.cpp”), it reports only one testcase: either there were one or more cases skipped (recorded as a
SKIP), one or more cases failed (recorded as a FAIL), or all cases passed (recorded as a PASS).

 We have added a new make-summary command, which will produce the appropriate .sum file. Also,
we re-named buildboth-all to buildmax.

The testcases in t007.dir are all “difficult” in one way or another; they try to exhaust all free space or
are prone to run forever on multi-threading failures, etc. In the dst-win (Windows) environment, each
execution will be prefixed with a “time /T” command which will at least permit visual inspection of the
elapsed time. One must manually kill the batch file, manually edit it, and start it running again. In the
dst-ix (Linux/UNIX) environment, we can do slightly better: Each testcase is started as a background
task. Then after a configurable elapsed time, the lvsclgo2 script kills the background task, and if it was
still running, we add it (with a times-ten configurable elapsed time) to a build-again script.

Using these methods, we have obtained a successful alpha-testing of each testcase in t007.dir (except
for one exceptionally-difficult case).

Trademarks: LibSuite++ and Plum Hall are registered trademarks of Plum Hall Inc in the USA and other
countries.

UNIX is a registered trademark in the United States and other countries. Windows and MS-DOS are
registered trademarks of Microsoft Corporation. C++ is not a trademark.

Unpublished copyright © 2018 by Plum Hall Inc.

All rights reserved. This manual may be reproduced only by licensees of LibSuite++, for internal use only.

Plum Hall Inc., 67-1185 Mamalahoa Hwy #D104, PMB #372 Kamuela HI 96743

1.: Historical Overview

NOTE: SOME OF THE INFORMATION HERE IS RETAINED AS A HISTORICAL REFERENCE.

For example, while CXX03 may be referenced, it is no longer supported on Windows because Microsoft’s
cl compiler only supports versions as far back as CXX14, the suites do not support any version prior to
CXX11.

LibSuite++®, the Plum Hall Validation Suite for C++, is a set of C++ programs for testing and evaluating a
C++ library implementation.

This manual will explain how each section of the suite works, how to configure the tests for your system,
and what assumptions are made about previous sections. The examples will illustrate the use of LibSuite+
+, and also demonstrate how some of the sections work.

1.1 License
Please take the time to read the license that your organization has signed. It is a legal document, and the
restrictions apply to any persons using the product.

Here is a brief summary:

• You may use LibSuite++ on any machine within a 2-mile radius of your Designated Site.
• Your Management Contact person, or anyone designated by the Management Contact, may call Plum

Hall for consultation and advice.
• You need to notify us if you designate a new Management Contact, or plan to change your Designated

Site, or plan to change your company’s name.
• LibSuite++ is proprietary, confidential, copyrighted software. You must protect its confidentiality with

the same procedures you use to protect your own company’s confidential information.
• You may not disclose the detailed results of running LibSuite++, except as permitted in the License.
• You may not take any form of copies of LibSuite++ away from the Designated Site.

1.2 Technical Overview
This distribution of LibSuite++ covers Chapters 17 through 30, and Normative Annex D, of the Standard
for C++. The normative tests of LibSuite++ are found underneath one directory named CONFORM; these
are positive tests for basic conformance with the Standard. (This section provides coverage for C++
analogous to the LIB tests of the Plum Hall C Validation Suite.)

Tools for use in different “destination” directories are provided in the directory trees named dst-win and
dst-ix. Each of these contains a subtree that matches the structure of the source directories in
CONFORM. Each subtree contains subdirectories for the various specialized tests of LibSuite++, named
t170.dir, t180.dir, etc. Thus, the components of LibSuite++ are arranged in a directory tree
something like this:

 |
 +---------+------------+------------+
 | | | |
conform dst-win dst-ix
 | | | |

 ... conform
 |
 +----------+------------+--------+
 | | | |
t170.dir t180.dir ... t27q.dir txd2.dir

All the configurable files are now found in the “destination root” directory. Your compile scripts need to
use $PHDST (or %PHDST%) in their search-path for header files in order for the compiler to find the
configurable headers.

Also, we define the compiler’s name as $PHCC (or %PHCC%) in the envsuite scripts. Configure this to
the name of your compiler’s executable file (e.g. mycc).

A useful feature of LibSuite++ allows you to record the reasons for each compile-time skipped case failure.
In your flags.h file, you can add a definition to some compile-time flags, such as

#define SKIP525Y1_11 our parser error
#define FAIL_261Y11 Plum Hall bug?

Once you’ve categorized your skips and fails in this way, the strings you defined will show up in the
execution output, something like this:

#SKIPPED 525Y1_11 (>our parser error<)
#FAILED _261Y11 (>Plum Hall bug?<)

And the “unexpected” skips and fails will show up with the distinctive string “(><)” attached to each
“unexpected” skip or fail. This makes it much easier to re-run the test suite after you’ve made compiler
changes, because you can quickly search for the “><“ string in the output to see if any new failures have
appeared.

You probably will need to put some SKIP flags into your flags.h file to skip test cases that prevent
you from building and executing the CONFORM programs.

In LibSuite++, we have also provided a simpler way of determining the SKIP and FAIL flags. Each
subdirectory, such as t170.dir, but the subdirectory also provides individual files, _17Y11.cpp,
_17Y12.cpp, etc., each of which contains only one specific test case. Therefore, you can compile and
run the smaller files individually. Each subdirectory contains a build script that performs this logic
automatically.

We define the compiler’s name as $PHCC (or %PHCC%) in the envsuite scripts. Configure this to the
name of your compiler’s executable file (e.g. mycc).

You can record the reasons for each compile-time skipped case or run-time failure. In your flags.h file
you can add a definition to some compile-time flags, such as

#define SKIP_171Y1_11 our parser error
#define FAIL_261Y11 Plum Hall bug?

Once you’ve categorized your skips and fails in this way, the strings you defined will show up in the
execution output, something like this:

#SKIPPED _171Y1_11 (>our parser error<)
#FAILED _261Y11 (>Plum Hall bug?<)

And the “unexpected” skips and fails will show up with the distinctive string “(><)” attached to each
“unexpected” skip or fail. This makes it much easier to re-run the test suite after you’ve made compiler
changes, because you can quickly search for the “><“ string in the output to see if any new failures have
appeared.

2.: Configuration
2.1 What You Need to Know and Do
In order to install and run LibSuite++, there are several things you need to know, and several things you
need to be able to do. If you don’t have this knowledge yourself, then you need to locate someone who
knows these things and is able to provide you with the information.

• You need to know how to use a text editor on each system you will be using.

• You need to know the basics of how to write and execute “script” (or “batch”) files on each system.

• You need to know how much free disk space is available on each system. Fifty megabytes (50 MB) is
often enough, if you remove each executable file after gathering its output. If you have less, refer to
the Resources section later in this chapter for details.

• You need to know some C++ programming, to customize certain files and to understand the general
meaning of the compiler diagnostics that may be produced by some of the nastier test cases.

• You need to know which compiler and library you are supposed to test, and what commands,
arguments, environment settings, etc., are needed in order to invoke the compiler you’re testing. (The
compiler you’re testing is called the target compiler.) You may also need to use a different compiler to
compile the tool programs themselves. This is known as the host compiler, and it may have its own
commands, arguments, environment settings, etc.

• Similarly, you need to know how to invoke the target linker and the host linker, to link the object-files
produced by the compilers together with the appropriate libraries.

• Once the target compiler and target linker have produced an executable program to be tested, you need
to know how to execute that executable program. On some systems this is almost trivial; on others it
involves downloading from one machine to another, capturing output, networking the output back to
the host machine, etc.

2.2 Running LibSuite++

There are many different modes in which you can use the Plum Hall Suites:

• Script (or “batch”’) command files for compiler, linker, etc, or “line-by-line” individual commands.
• Host compiling (host and target compiler are the same), or cross compiling (host and target are

different).
• UNIX platform, or Windows platform, or some other platform.
We have packaged the LibSuite++ so that any set of these choices can be chosen.

2.3 Scripts
Using scripts (or “batch”’ files) for compiler, linker, etc., simplifies many aspects of running the suite in
varying environments. For example, many QA departments will need to routinely re-execute LibSuite++
using dozens of different compiler flags and options. Using an unchanging set of compiler scripts, and just
changing the flags and options in one script, or just setting the flags into environment variables, allows
routine re-running of LibSuite++.

In LibSuite++. there is only one script to perform compile-link-and-go:

lvsclgo pgm [output-file-name] [bfile]

 Compile pgm, taking source and headers from the appropriate directories. Put diagnostic messages
into pgm.clg. Put output into output-file-name, if specified, otherwise send output to standard output. If the
third argument is bfile, pgm.cpp will be linked with pgm_b.cpp.

envsuite
The envsuite script requires hand-configuration of environment variables for host and target compilers.
You must examine it line-by-line. Here are a few of the environment variables it defines:

UNIX CONSIDERATIONS

If you are on a UNIX platform, you may need to execute the chmodall script:

sh chmodall

in order to mark all your script files as executable files. (It can’t hurt, whether needed or not.)

DOS CONSIDERATIONS

The scripts and makefiles need three commands which are common on UNIX but not standard on
Windows: cat, rm and cp. We have written work-alike C source files named phcat.c (for ``Plum Hall
cat”), phcp.c (for ``Plum Hall cp”), and phrm.c (for “Plum Hall rm”). The makefile in dst.1 and
dst.2 will compile these to produce exe files (phcat.exe, phcp.exe, phrm.exe). After
building each of these exe files, the makefile invokes a “setup” script (setup-cat.bat, setup-
cp.bat, setup-rm.bat). Using “cat” as an example, the setup script determines whether a
command named cat is already available on this system. If not, it copies phcat.exe to be named
cat.exe, so that any further invocation of cat will invoke this exe file.

2.4 buildmax
When you have configured for your choices of environment, you should be ready to run all the tests

The buildmax command runs lvsclgo upon each of the source files in the conform directory.

The buildmax command also builds the summary files (.sum,.det,.html files), using the
appropriate file of expected results (.exp file).

Besides the scripts, you will need to configure these other files that are in the destination directory:

PHCC the name of the target compiler

PHCFLAGS compiler flags (for target compiler)

OLDPATH original value of PATH variable before starting

PATH command search path, including compilers, linkers, etc.

flags.h	 configurable parameters, including SKIP and FAIL
flags

hocompil.h	 characteristics of host-compiler (if different from
target compiler)

SETTING THE ENVSUITE ENVIRONMENT

Each time begin a testing session it is important to “source”’ the envsuite script to establish all the
necessary environment variables. This operation exports the environment variables into your interactive
shell.

You do this in different ways depending on your host system’s command processor or “shell”:

MS-DOS	 simply type envsuite.
Bourne shell	 use the “dot”’ command: “. ./envsuite”

2.5 Installing A Release
We try to accommodate our customers’ wide variety of environments, operating systems, and purposes for
the suite. Also, we try to use update procedures which will be reasonably efficient for those who make no
changes to the distributed Suite, while still being flexible enough for those of you who make local changes.

Some of you are primarily interested in the quality assurance process of running the suites, exactly as
distributed, in a reliable fashion that takes a minimum of your time. Others of you are developing
compilers that change daily, tracking the latest Standard, with numerous local changes and SKIP flags to
accommodate unimplemented features.

We always welcome ideas and suggestions for improvement, so please let us know if you see a better way
of doing something.

Minimal and Complete Installation Choice

The original packaging of LibSuite++ contained only a few dozen source files. Although the small number
of compilations was convenient, the downside was the iterative manual process of determining the SKIP
flags for the flags.h header, to skip language features yet unimplemented in the compiler.

We provide an alternative packaging of LibSuite++ to include “small” files, each containing one test. This
packaging is described later in this manual. The hundred or so new subdirectories under conform each
contain a traditional “big” file, as well as corresponding “small” files. Each directory’s build script builds
the “standalone” cases, then tries to build the “big” file. Then, if trying to build the “big” file fails, it tries to
build each of the small files. Thus, you get full test results on the first run through the suite, with no manual
setting of SKIP flags required.

Installing the Distribution

Most importantly, install to an empty directory. Installing over the old directory structure will cause no end
of chaos. (Also, removing the prior release will help you fulfill your license requirement to maintain
source-control of previous versions.)

Verifying Your Files

No matter which method you used for updating—diskette, tape, or patch from diffs—you can check your
resulting updated files by compiling the txtchk program, and then using it to test the checksum of all
your file contents:

homachin.h	 characteristics of host-machine (if different from
target machine)

hodefs.h	 flags for hosted compilation (if different from
defs.h)

cd ~/PlumHall/lvs22a-gcc-c20 (or whatever your source root is named)
txtchk -f lvs22a

3.: CONFORM

The CONFORM section provides thousands of C++ programs, each covering part of a clause in the Library
section of the Standard:

t170	 Clause 17;
t180	 First part of clause 18;
t181	 Second part of clause 18;

etc.

Each program writes a report to its .out file in a form very similar to the output of the LANG program in
the C Suite. That is, t170 reports that it has executed the first test with the output

***** Reached first test *****

t170 reports errors using messages of the form

ERROR in t170 at line 656: (4) != (5)

and prints a summary of the form

***** 18 individual successful items in t170
***** 11 successful tests in t170
***** 0 errors detected in t170
***** 0 skipped sections in t170

An “individual successful item” is the successful outcome of one individual test function (ieq, chk, etc.).
A “successful test” is the completion of a begin_case-end_case sequence with no errors in its
individual items.

3.1 Compiling and Executing LibSuite++ CONFORM
In the distribution, C++ source files have a .cpp extension and headers have a .h extension. The .cpp
files may be renamed to, say, .cxx files to suit your compiler, but the .h files should not be renamed.

The buildmax script specifies all the steps for building and executing each program. Or you can create
the executables by invoking your compiler and linker directly from a command line.

For example, to create the executable for t170, compile and link the following files: t170.cpp and
util.c. The compiler command line is typically of the form

CC -ot170 t170.cpp util.c

where CC is the C++ compiler command, t170.cpp supplies the main function for the program, and
util.c contains utility functions used in the test cases.

Alternatively, if in your flags.h file you place a definition like

#define UTIL_SHOULD_BE_INCLUDED

then the compilation will #include “util.c” and you need not link with it. This simplifies the
compilation process somewhat, and if the compiler supports precompiled headers there is not much
overhead in the method.

3.2 Selective Enabling/Disabling with flags.h

In the destination directory, you should create a file named flags.h. This header is #included by
each LibSuite++ file, so that you can record specific enable/disable flags for the tests being made in this
directory tree.

If your C++ compiler cannot compile a particular test case, you can use a SKIP flag to disable that case.
For example, to prevent compilation of test case _17312Y21 in t170.c, add

#define SKIP_17312Y21 because some reason

to the file flags.h. Then recompile and relink t170. The line

#SKIPPED: _17312Y21 (>because some reason<)

will appear in the output when you execute t170. The total number of skipped cases appears at the end of
the output.

You can also define DISALLOW flags in flags.h to globally disable certain language features that your
compiler may not be able to handle.

For example

#define DISALLOW_MEMBER_TEMPLATES

compiles alternative code for some cases to accommodate the absence of member templates. See the
flags.h file for description of each flag.

Similarly, each Library issue in C++17 status has at least one test case for the specified behavior. Using

#define DISALLOW_CXX17
causes the set of all those test cases to be disabled.

The “disputed cases”, described in the following section, are excluded by default.

3.3 Controversial Cases
We strive to make LibSuite++ test the C++ library as commonly understood by the worldwide C++
community. The purpose of the ongoing standard is to capture that understanding. However, there will
probably always be specific issues in the language which evoke differing interpretations, and hence there
will probably be specific tests in LibSuite++ which evoke differing opinions from LibSuite++ users about
the expected results. LibSuite++ accommodates controversial tests in the category of “disputed cases”,
which are disabled by

#define DISALLOW_DISPUTED

A “disputed case” is a test for which some LibSuite++ users have expressed the view that, although the test
reflects the words in the Standard, the words in the Standard do not reflect common practice, or that the
words in the Standard are in the process of being revised within the C++ committee.

We hope to eventually resolve all the disputed cases and convert them to agreeable tests in the CONFORM
sections of LibSuite++. We welcome your feedback regarding our judgments in these areas.

3.4 Running the CONFORM Programs
Once configuration is completed, you are ready to compile and execute the CONFORM programs. Any
compile errors reported may represent currently-unimplemented syntactic features, or bugs in your
compiler, or bugs in LibSuite++. Or, don’t forget, sometimes a compile error means that the compiler
wasn’t properly installed, or that you weren’t told the proper command-line options to use, or that the
compilation environment wasn’t properly set up. You have to investigate all these possibilities.

If you are unable to trace the cause of any compile errors whilst building CONFORM, you should telephone,
fax or email Plum Hall for assistance.

Some testcases in t007.dir will intentionally keep allocating until the heap is exhausted, in order to test
the out-of-memory responses; see SR01131. We have not found any portable way to reduce the time that
this takes. On some Unix/Linux systems you may be able to use ulimit –v nnnn and/or ulimit –
d nnnn to reduce the heap size. In some cases, you can reduce the heap size in a virtual machine. If you
are really lucky, the allocation library can accept a request to pretend that heap is exhausted. We are
interested in hearing any suggestions.

Users have asked us to help speed up testing on parallel multiprocessor systems. We have provided a
makefile in the dst*/conform folder, which can be executed with

	 make -k --jobs N all

so that users with N processors should see an N-fold speedup.

When you have tried all the components of the CONFORM section (or at any time you like), you can
compare your obtained results against the expected results by executing, in the destination root directory,
the command make-summary.

