
Version 2025a August 2025

Your Feedback is Valued

Please feel free to contact me with any issues, errors, omissions, thoughts, … concerning the test cases and
infrastructure in the Plum Hall test suites. The software is constantly updated with new test cases and infrastructure
improvements. A new distribution is released in the month of August every year. Please contact me by email:
dougteeple at plumhall2b.com.

New in cvs25a:

This release addresses many defect reports from customers in the 24a release and adds new tests for C26 proposed
features as documented in publication n3301.pdf.

New Test Cases

There are 103 new test cases documented in “coverage-c26.html”, in multiple directories. These new test cases
predominantly pertain to the C26 proposed standards. The total number of test cases is now more than 4000. The
new test case names are prefixed by c2y_. The test cases prefixed by c2x_ and c2y_ have a slightly different
structure so that they can be run either as prior cases linked in to lang.c / lib.c or run standalone. This new feature
(courtesy makefile magic) is useful during testing to run the tests individually through the runtest.sh script (e.g.
runtest.sh c2y_5_2_1). The prior method of linking tests into lang.c and lib.c suffered from the fact that, if there was
a failure in any test case, then lang/lib would fail to link, and no test results could be seen.

CV-Suite:
The Plum Hall Validation Suite for C

Version ISO Document __STDC_VERSION__ Comments

C11 ISO/IEC 9899:2011 201112L
C17 ISO/IEC 9899:2018 201710L AKA C18, C1X
C23 ISO/IEC 9899:2024 202311L C2X
C26 ISO/IEC 9899:202y C2Y

C Releases

0
50
100
150
200

CVS11 CVS17 CVS20 CVS23 CVS26

CVS New Test Cases

76 9 16

190

103

There are new test cases in a new category, which is by functionality:

c2y_23.c
c2y_26.c
c2y_MISRA_C23.c
c2y_ISO_26262.c
c2y_threads.c
c2y_lambda.c
c2y_embedded.c
c2y_freestanding.c
c2y_ub.c
c2y_annex_b.c
c2y_annex_f.o
c2y_annex_g.o
c2y_annex_h.o
c2y_annex_k.o
c2y_annex_d.o
c2y_annex_d.c
c2y_annex_e.c
c2y_annex_k.c
c2y_annex_j.c
c2y_annex_h.c
c2y_annex_g.c
c2y_annex_f.c
c2y_appendix_b.c

Each test case tests for specific functionality, alluded to by the test name.

Running the Test Suite

It is very important that you review envsuite(.bat), flags.h, compiler-flags.h and compiler-setup.bat to choose
the correct settings for your compiler.

envsuite(.bat) is a script which is basically a large case statement. The cases are settings for different compilers.
Common compilers are available in the script. If your compiler is not represented, you can use the existing
implementations as a guide. envsuite is called in such a way that it instantiates environment variables used by the
build script to run the test cases.

flags.h is a header file included by each test case. It defines flags which determine the standards year to test against
and features that should be tested for the corresponding standards year.

compiler-flags.h is another header included by each test case. It defines specific flags for each compiler. If your
compiler is not represented, add it using existing cases as a guide. The flags are very restricting as shipped. The
reason is that is the only way for the tests actually to return any results, particularly for newer standards years, for
which few, if any of the features tested actually compile. So, after an initial run to get basic results, you may see that
many test cases are not as skipped. Over time, remove the restraint flags to test newer standards features.

compiler-setup.bat is a Windows-only script that should be run after envsuite.bat to set up specific compiler
environment variables. Modify as required (but don’t forget to run this script after envsuite.bat).

Version 2024a August 2024

Your Feedback is Valued

Please feel free to contact me with any issues, errors, omissions, thoughts, … concerning the test cases and
infrastructure in the Plum Hall test suites. The software is constantly updated with new test cases and infrastructure
improvements. A new distribution is released in the month of August every year. Please contact me by email:
dougteeple at plumhall2b.com.

New in cvs24a:

This release addresses many defect reports from customers in the 23a release and adds new tests for C26 proposed
features.

New Test Cases

There are 30 new test cases documented in “newcases-cvs23a-cvs24a.txt”, in multiple directories. These new test
cases predominantly pertain to the C26 proposed standards. The new test case names are prefixed by c2x_ and c2y_.

The 24a release represents 3+ years of test case bug fixing, infrastructure improvements, and new test cases for C17,
C20, C23, C26, language and library enhancements. There are many improvements in enhancing the test cases
themselves, scripting and enhancing the reporting of the results, through the new html interfaces for reporting
coverage, commentary on the intent of the test cases and improved standards conformance reporting.

The file compiler-flags.h contains defines for common compilers. Modify these settings if your compiler is
implemented in the list, our add custom settings for your compiler. Also review envsuite in detail. Some suggested
settings are included for common compilers. Use these settings to create the appropriate build environment for the
version of the compiler that you wish to test.

Version ISO Document __STDC_VERSION__ Comments

C11 ISO/IEC 9899:2011 201112L
C17 ISO/IEC 9899:2018 201710L AKA C18, C1X
C23 ISO/IEC 9899:2024 202311L C2X
C26 C2Y

C Releases

Version 2023a August 2023

New in cvs23a:

This release addresses many defect reports from customers in the 22a release and adds new tests for C20 and C23
features. As of this release support for older C versions prior to C11 is dropped.

New Test Cases

There are 30 new test case files, documented in “newcases-cvs23a-cvs24a.txt”, in multiple directories. These new
test cases predominantly pertain to the C23 and C26 standards.

Bug Fixes

The 23a update release represents 3+ years of test case bug fixing, infrastructure improvements, and new test cases
for C17, C20, C23, C26 (proposed) language and library enhancements. There are many improvements in enhancing
the test cases themselves and also enhancing the reporting of the results, through the new html interfaces for
reporting coverage, commentary on the intent of the test cases and improved standards conformance reporting.

Version ISO Document __STDC_VERSION__ Comments

C11 ISO/IEC 9899:2011 201112L
C17 ISO/IEC 9899:2018 201710L AKA C18, C1X
C20 AKA C2X
C23 Proposed

C Releases

Infrastructure
Installers are available on the PlumHall server for Linux (installPH.sh) and Windows (installPH.bat). These
installers greatly simplify installing the PlumHall distributions in a standard layout as described below. Download
the installers from the plumhall2b.com server and create the default installations. The installers are customized for
each customer:

Executing the scripts will download your distributions and check the MD5 sums. If the sums do not match the
scripts will exit with an error, please contact PlumHall should this occur. If the MD5 sums are correct then
compressed files will be expanded and installed in the standard directory structure.

If you have trouble with the install scripts, you may enter the commands:

If you did a manual download you may then run the installer script with the option --nodownload to unpack, check
the MD5 signatures and create and populate the standard directory structures. The installer extracts into a directory
named ~/PlumHall/ by default. Please ensure that the md5sum utility is available
and verify that the MD5 sums compare.

The script will ask for your plumhall2b ftp password as part of the installation process.

The default folder naming convention is:

ftp plumhall2b.com
Connected to plumhall2b.com.
220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------
Name (plumhall2b.com:doug): OscarWilde1854
331 User OscarWilde1854 OK. Password required
Password: ************
passive
get installPH.sh
get installPH.bat
quit

~/installPH.sh --help
Download, check the MD5 hash and install the PlumHall test suites in $HOME/PlumHall/
Options:
 --cvs=<version> : install CVS version e.g. --cvs=CVS002
 --xvs=<version> : install XVS version e.g. --xvs=XVS002
 --lvs=<version> : install CVS version e.g. --lvs=LVS002
 --compiler=<name> : brief compiler name used to create directory  

structure, e.g. gcc, edg, clang, etc
 --PW=<zip password> : zip password for distribution
 --login=<login name> : login name given in download instructions, e.g. techcontactname
 --username=<username> : suffix to user name given in download instructions,  

e.g. techcontactname8345
 --keep : do not delete existing directories before unpacking the distributions.
 --verbose : chatty
 --help : help me if you can…

Note: uses scp to securely copy the distributions from the plumhall2b.com server, zip to unpack the
distribution and md5sum to calculate the MD5 hash.

ftp plumhall2b.com
login: OscarWilde1854@plumhall2b.com
passwd: *********
passive
get installPH.sh or get installPH.bat
get cvs23a-CVS000.tar.gz
get cvs23a-CVS000.tar.gz.md5
get cvs23a-CVS000.zip
get cvs23a-CVS000.zip.md5
…
bye

<Test Suite><PlumHall Release Year>-<Compiler Mnemonic>-c<Standards Year>/

e.g. cvs23a-gcc-c20/

http://plumhall2b.com
http://plumhall2b.com

For example, to create directories for each of the standards years C17 and C20, for compilers gcc and clang:

There are three main points of customization:

 - flags.h for C/C++ version options,
 - compiler-flags.h for compiler-specfic options and
 - envsuite.sh (envsuite.bat) to customize the execution environment.

Some customization is possible by using envsuite command line options. For example: envsuite.sh cc=g++-
latest sets the latest version of gcc to use. Type envsuite.sh -h for current arguments. Further customization
requires editing envsuite.sh(.bat)

The envsuite script has been modified to more easily support a standard PlumHall directory structure and multiple
compilers on the command line. The standard directory structure is:

	
where <cc> is gcc or clang, or cl on Windows. The script createDestination.sh is available to create and
populates these default directories, though the installPH scripts do this by default. It takes a command line
argument cc=<gcc | clang | cl> to create different build directories for multiple compiler testing. The scripts take
arguments cc=gcc or cc=gcc-10 to cc=clang-12 as examples. envsuite will need editing for your particular
environment. PH_C26 is set as the default release in flags.h and envsuite.

The file flags.h customizes for C standards release version:

~/PlumHall/xvs23a-<cc>-c20/ build directory
~/PlumHall/xvs23a source directory
~/PlumHall/xvs23a-<cc>-c20-setup/ setup directory updated by script save-setup

~/PlumHall/lvs23a-<cc>-c20/
~/PlumHall/lvs23a/
~/PlumHall/lvs23a-<cc>-c20-setup/

~/PlumHall/cvs23a-<cc>-c20/
~/PlumHall/cvs23a/
~/PlumHall/cvs23a-<cc>-c20-setup/

installPH.sh --stdyear=17 --stdyear=20 --compiler=gcc --compiler=clang

The file compiler-flags.h allows for setting flags specific to a particular compiler. These flags are often set to get
around compile errors which prevent viewing overall results. For example lang.c and lib.c link in relevant test case
object files. If a compile of a particular test fails, none of the results of the other tests can be seen.

The file compiler-flags.h contains defines for common compilers. Modify these settings if your compiler is
implemented in the list, our add custom settings for your compiler. Also review envsuite in detail. Some suggested
settings are included for common compilers. Use these settings to create the appropriate build environment for the
version of the compiler which you wish to test.

It is very important that you review envsuite(.bat), flags.h and compiler-flags.h to choose the correct settings
for your compiler.

Customization of flags.h

Customization of compiler-flags.h

The release numbers in flags.h and envsuite MUST be kept in sync.

The build system itself has been enhanced. In prior releases adding a test case required hand editing multiple
different makefiles and scripts. In this release this is no longer required, the makefiles and script automatically adjust
to addition/deletion of test cases.

For example on Linux:

. ./envsuite cc=gcc-latest

At the end of each buildmax build the following html files are created:

The file conform-ctests-cxx shows a summary of successful tests and those with issues:
The links to the source file, the output log, and the error log are all active and viewed as html.

The value in the Expected column is the number of test cases, where Expected = Actual + Errors + Faults + Aborts.
The Actual column is the sum of the number of test results that matched expected values/behavior plus the number
of skipped test cases. The value in the Skipped column is the number of skipped test cases. The value in the Errors
column is the sum of the number of test cases that meet one of the following conditions:
 - One or more unexpected values are returned in the test items.
 - A compile error occurred, when the test file was compiled.
 - An execution error occurred, when the test was executed.

Customization of envsuite(.bat)

 coverage-c20.html
 commentary-c20.html
 ctests-c20.html
 conform-c20.html
 conform-ctests-c20.html
 report-c20.html

The value in the Abort column is the number of test cases that and abort occurred. The value in the Faults column is
the number of tests that meet one of the following conditions:
 - An uncaught exception occurred when the test was executed.
 - An internal error occurred when the test file was compiled.
 - Unknown or unreported test results.

The links to the .out log file and .cpp source file help to quickly find what the issue is and where.

The “t***.out” log filename in column 1 is a link to the actual output log of test result summaries for the entire test
directory. The center column shows errors linked to the “<testfilename>.clg” compiler log file showing compile
errors.

conform-ctests-cxx.html

Output Log File

The compiler error file shows any compiler error output:

ch66.clg.html

The test source file:

Test Source File

The make-commentary script creates an html file (commentary-cxx-gcc.html for example) that shows a brief
commentary of the purpose of each test case by folder name and test name:

The filenames are links which will open the files for viewing in the html browser.

The make-coverage script generates the html file coverage-cvs24a.html which shows for each C release, the
Defect Report number, the directory test case file and a brief description of the Defect Report. This is useful to find
which directories and test cases address a particular feature introduced by the Defect Report.

commentary-ctests-cxx.html

coverage-cxx.html

The make-report script generates a table showing all files with the associated commentary:

Again the file names are links for convenient browsing of the test case suite. All of these html documents are
produced dynamically from the source as the last steps in the buildmax script.

There is a new script runtest.sh(.bat) which given a test identifier will find that file in the source directory and
execute just that test. It is useful for debugging test cases. Here is an example of usage:

Please let me know your thoughts and suggestions: doug@plumhall2b.com.

report-cxx.html

C20 Language/ Library Features - ISO/IEC 9899:202x
Feature Paper Addressed Test Cases

volatile semantics for lvalues DR 476
c16rtomb() on wide characters encoded as multiple
char16_t DR 488 c11_7_28.c

Part 1: Alignment specifier expression evaluation DR 494 ch65a.c
"white-space character" defined in two places DR 497 ch7_252h.h
Anonymous structure in union behavior DR 499 ch65c.c
Ambiguous specification for FLT_EVAL_METHOD DR 500 ch7_12.c
make DECIMAL_DIG obsolescent DR 501 ch77.c
changes for obsolescing DECIMAL_DIG FPDR20 c2x_7_20.c

printf of one-digit character string FPDR21,
N2283 ch7_12.c

llquantexp invalid case FPDR23 c2x_7_12.c
remainder NaN case FPDR24 ch7_12.c
totalorder parameters FPDR25 c2x_7_12.c

rounding direction macro FE_TONEARESTFROMZERO N2124,
N2319 ch76.c

Alternative to N2166 N2186 ch7_12.c
type generic cbrt (with editorial changes) N2212 ch7_22h.h
Clarifying the restrict Keyword v2 N2260 ch67.c
Harmonizing _assert with C++ N2265 n07.in
nodiscard attribute N2267 c2x_6_711a.c
maybe_unused attribute N2270 c2x_6_711a.c
CR for pow divide-by-zero case N2271 ch7_12.c
Alignment requirements for memory management functions N2293 ch65a.c
preprocessor line numbers unspecified N2322 ch6_10.c
DBL_NORM_MAX etc N2325 ch77.c
floating-point zero and other normalization N2326 ch77.c
deprecated attribute N2334 c2x_6_711a.c
strftime, with ’b’ and ’B’ swapped N2337 ch7_23.c
error indicator for encoding errors in fgetwc N2338 ch7_24b.c
editors, resolve ambiguity of a semicolon N2345 c11_7_26a.c
the memccpy function N2349 ch7_21.c
defining new types in offsetof N2350 n07.in
the strdup and strndup functions N2353 ch7_21.c
update for payload functions N2356 ch7_12.c
no internal state for mblen N2358
part 2 (remove WANT macros from numbered clauses) and
part 3 (version macros for changed library clauses) N2359 ch7_12.c

The fallthrough attribute N2408 c2x_6_711a.c
Two’s complement sign representation for C2x N2412 ch7_10.c
Section 6: Add time conversion functions that are relatively
thread-safe N2417 c11_7_26d.c

Adding the u8 character prefix N2418 ch64.c, ch67.c, negtests/n01.in
Remove support for function definitions with identifier lists N2432 n07.in

6

C17 Language/Library Features ISO/IEC 9899:2018
Feature Paper Addressed Test Cases

realloc with size zero problems DR 400 flags.h, conform/ch7_20.c
"happens before" cannot be cyclic DR 401 conform/c11_717b.c
memory model coherence is not aligned with C++11 DR 402 conform/ch_67.c, conform/c11_7_26b.c
malloc() and free() in the memory model DR 403 conform/ch7_20.c
joke fragment remains in a footnote DR 404
mutex specification not aligned with C++11 on total order DR 405 conform/c11_7_26e.c
Visible sequences of side effects are redundant DR 406 conform/c11_7_17c.c
SC fences do not restrict modification order enough DR 407 conform/c11_7_17b.c
ilogb inconsistent with lrint, lround DR 410 conform/ch7_12.c
#elif DR 412 conform/ch6_10.c
typos in 6.27 threads.h DR 414
Missing divide by zero entry in Annex J.2 DR 415 conform/ch65b.c
Proposed defect report regarding tss_t DR 416 conform/c11_7_26g.c
Missing entries in Annex J DR 417
What the heck is a "generic function"? DR 419 conform/c11_7_26b.c
underspecification for qualified rvalues DR 423
G.5.1: -yv and -x/v are ambiguous DR 426
runtime-constraint issue with sprintf family of routines in
Annex K DR 428 ch7_18.c, ch7_19.c, ch7_20.c, ch7_21.c, ch7_23.c,

ch7_24c.c, ch7_24d.c, ch7_24f.c
Should gets_s discard next input line when (s ==
NULL) ? DR 429 conform/ch7_19.c

getenv_s, maxsize should be allowed to be zero DR 430 conform/ch7_20.c
atomic_compare_exchange: What does it mean to say
two structs compare equal? DR 431 conform/c11_7_17c.c

Issue with constraints for wide character function DR 433 conform/ch7_24f.c, conform/ch7_20.c
Missing constraint w.r.t. Atomic DR 434 conform/ch67.c, negtests/n07.in
Request for interpretation of C11 6.8.5#6 DR 436
clock overflow DR 437 conform/ch7_23.c
ungetc / ungetwc and file position after discarding push
back DR 438 conform/ch7_24b.c

Issues with the definition of “full expression” DR 439 conform/ch67.c
Floating-point issues in C11 from PDTS 18661-1 UK
review, Issue 2 DR 441 conform/ch77.c

Issues with alignment in C11, part 1 DR 444 negtests/n07.in, conform/ch65a.c
Issues with alignment in C11, part 2 DR 445 conform/ch62.c, conform/ch7_17.c
Boolean from complex DR 447 conform/ch65b.c
What are the semantics of a # non-directive? DR 448 conform/ch6_10.c
tmpnam_s clears s[0] DR 450 conform/ch7_19.c
Effective Type in Loop Invariant DR 452 conform/ch65c.c
Atomic flag type and operations DR 453 conform/c11_7_17.c
The ctime_s function in Annex K defined incorrectly DR 457
ATOMIC_XXX_LOCK_FREE macros not constant
expressions DR 458 conform/c11_7_17b.c

atomic_load missing const qualifier DR 459
aligned_alloc underspecified DR 460 conform/ch7_20.c
Clarifying objects accessed in signal handlers DR 462
Clarifying the Behavior of the #line Directive DR 464 conform/ch6_10.c
Fixing an inconsistency in atomic_is_lock_free DR 465 conform/c11_7_17b.c
strncpy_s clobbers buffer past null DR 468 conform/ch7_21.c
mtx_trylock should be allowed to fail spuriously DR 470
Complex math functions cacosh and ctanh DR 471 conform/ch73.c, conform/ch7_22j.h,
Introduction to complex arithmetic in 7.3.1p3 wrong due
to CMPLX DR 472

"A range error occurs if x is too large." is misleading DR 473 conform/ch7_12.c
Misleading Atomic library references to atomic types DR 475
nan should take a string argument DR 477 conform/negtests/n01.in #041
cnd_wait and cnd_timewait should allow spurious wake-
ups DR 480

Controlling expression of _Generic primary expression DR 481 conform/ch65a.c
Problem with the specification of ATOMIC_VAR_INIT DR 485 conform/c11_7_17a.c
timespec vs. tm DR 487
Concern with Keywords that Match Reserved Identifiers DR 491 conform/negtests/n01.in #42

5

C11 Language Features - ISO/IEC 9899:2011
Feature Addressed Test Cases

gets()

Atomic objects (_Atomic)
c11_7_17a.c, c11_7_17b.c, c11_7_17c.c, c11_7_17c.c,
c11_7_26b.c, ch62.c, ch67.c, ch7_14b., ch7_14.c, negtests/
n07.in

Thread local storage (_Thread_local) c11_7_17a.c, c11_7_26a.c, negtests/n07.in
Alignment query (_Alignof) ch62.c, ch65a.c, ch66.c, ch7_14.c, negtests/n05.in
Alignment strengthening (_Alignas) ch67.c, ch7_14.c, negtests/n07.in, negtests/n07.in
Over-aligned types ch67.c
u/U character constants ch64.c, ch67.c
u8/u/U string literals ch64.c, ch67.c
Generic selection expressions (_Generic) ch63.c, ch63.c, ch65a.c, ch65b.c, negtests/n05.in
Non-returning functions (_Noreturn) c11_7_26f, ch67.c, ch7_20.c, negtests/n01.in
Anonymous struct and union members ch7.c
Fine-grained evaluation order
Extending the lifetime of temporary objects ch62.c
__assert negtests/n07.in
__STDC_ANALYZABLE__ ch6_10.c
__STDC_LIB_EXT1__ ch6_10.c
__STDC_NO_ATOMICS__ ch6_10.c
__STDC_NO_COMPLEX__ ch6_10.c
__STDC_NO_THREADS__ ch6_10.c
__STDC_NO_VLA__ ch6_10.c

3

C11 Library Features - ISO/IEC 9899:2011
Feature Addressed Test Cases

<stdalign.h> ch7_14.c

<stdatomic.h>

c11_7_17a.c, c11_7_17a.c, c11_7_17b.c, c11_7_17b.c,
c11_7_17c.c, c11_7_17c.c, c11_7_26a.c, c11_7_26b.c,
c11_7_26c.c, c11_7_26d.c, c11_7_26e.c, c11_7_26f.c,
c11_7_26g.c

<stdnoreturn.h> ch7_20.c

<threads.h>

c11_7_17b.c, c11_7_26a.c, c11_7_26a.c, c11_7_26b.c,
c11_7_26b.c, c11_7_26c.c, c11_7_26c.c, c11_7_26d.c,
c11_7_26d.c, c11_7_26e.c, c11_7_26e_s.c, c11_7_26f.c,
c11_7_26g.c, ch7_23.c, ch7_23.c

<uchar.h> c11_7_17a.c, c11_7_17c.c, c11_7_28.c, c11_7_28.c,
ch7_24.c, ch7_24f.c

Atomic operation library

c11_7_17a.c, c11_7_17a.c, c11_7_17b.c, c11_7_17b.c,
c11_7_17c.c, c11_7_17c.c, c11_7_26a.c, c11_7_26b.c,
c11_7_26c.c, c11_7_26d.c, c11_7_26e.c, c11_7_26f.c,
c11_7_26g.c

Thread support library

c11_7_17b.c, c11_7_26a.c, c11_7_26a.c, c11_7_26b.c,
c11_7_26b.c, c11_7_26c.c, c11_7_26c.c, c11_7_26d.c,
c11_7_26d.c, c11_7_26e.c, c11_7_26e_s.c, c11_7_26f.c,
c11_7_26g.c, ch7_23.c, ch7_23.c

aligned_alloc() ch7_20.c

char16_t c11_7_17a.c, c11_7_17a.c, c11_7_17a.cs, c11_7_17b.c,
c11_7_17c.c, c11_7_28.c, ch64.c, ch64.c, ch67.c, ch7_24f.c

char32_t c11_7_17a.c, c11_7_17a.c, c11_7_17a.cs, c11_7_17b.c,
c11_7_17c.c, c11_7_28.c, ch64.c, ch64.c, ch67.c, ch7_24f.c

mbrtoc16() c11_7_28.c, ch7_24f.c
mbrtoc32() c11_7_28.c, ch7_24f.c
c16rtomb() c11_7_28.c, ch7_24f.c
c32rtomb() c11_7_28.c, ch7_24f.c
quick_exit ch7_20.c
at_quick_exit ch7_20.c
Exclusive modes of fopen() and freopen() ("x") ch7_19.c
Bounds checking functions
gets_s ch7_19.c
fopen_s ch7_19.c
printf_s ch7_19.c
strcpy_s ch_21.c
wcscpy_s ch7_24d.c
mbstowcs_s ch7_20.c
qsort_s ch7_20.c
get_env_s ch7_20.c

timespec c11_7_26c.c, c11_7_26d.c, c11_7_26d.c, c11_7_26e.c,
c11_7_26e.c, c11_7_26f.c

timespec_get() c11_7_26d.c
CMPLX(F|L) ch65b.c
(FLT|DBL|LDBL)_DECIMAL_DIG ch77.c
(FLT|DBL|LDBL)_TRUE_MIN ch77.c
(FLT|DBL|LDBL)_HAS_SUBNORM ch7_12.c
Thread local errno c11_7_26b.c

4

Historical Versions

NOTE: SOME OF THE INFORMATION BELOW IS RETAINED AS A HISTORICAL REFERENCE.

For example, while C99 may be referenced, it is no longer supported, the suites do not support any version prior to
C11.

Version 2020b August 2021

New in cvs20b:

Changes have been made to accommodate the C20 and CXX20 flags:
	 - ch65a.c add C20 to #if
	 - defs.h, add CXX20 to #if’s
	 - c99.h, line 120, add C20 to #if
	 - flags.h, line 465, added C20 so as to include <stdbool.h>
	 - ctflags.h, added #If CXX20 #include <stdatomic.h>

New in cvs18a:

If you SKIP various testcases (see below), your numbers may be less than you might expect; SKIP’d testcases may
cause other testcases to be SKIP’d as well.

New in cvs15a:
We have added a new make-summary command, which will produce the appropriate .sum file. Also, we added
buildmax, to build everything (incorporating which-standard and whether-freestanding).

If there are no “dots” in the filename, the txtchk command will expect to find its checksums in a “.txtchk” file,
so it can now be invoked as simply
	 txtchk -f cvs15a

New in cvs14a:
We now have 3 standards for C: the original "C90" (for which Plum Hall has routinely included the "widechar and
digraphs" amendment), then "C99", and now "C11". We have accommodated this multiplicity by providing
different expected-results files (the “fs” expected-results are for “freestanding”, with minimal library):

conform-c90.exp conform-c90-fs.exp
conform-c99.exp conform-c99-fs.exp
conform-c11.exp conform-c11-fs.exp

The C11 standard added some new and interesting requirements upon test suites, namely the provision of 8 optional
features. Each of these features can be absent, without any impact on conformance; but if the feature is present, then
all requirements must be met.

The ideal that we have been working toward is that, having selected the appropriate standard, and determined
whether "freestanding" tests are to be used, then a 100% score will indicate full conformance, and anything less
indicates a conformance problem.

One method we used to get somewhat closer to this ideal is that cvs14a has tried to package each of the tests for
optional C11 features into functions which test for one or more required C11 features.

If you're testing against C11, and you do say that you have the (by-now optional) C99 <complex.h> feature, you
indeed will get 7743 successful test cases in lib.out. But if DISALLOW_C99_COMPLEX is defined, you would
have seen several hundred SKIPPED messages, which would spoil the ideal 100% score.

A minor version of the same problem goes back several years; there are 4 tests that showed up as SKIP's when
testing against the C90 standard: ch78 (for <inttypes.h>), ch7_16 (for <stdbool.h>), ch7_18 (for
<stdint.h>), and ch7_22 (for <tgmath.h>).

Our solution to this puzzle involves printing a message “omitting feature-x” when we otherwise would have printed
a SKIP message. The conformance-test scoring program (summary) will not notice the “omitting” messages, so
they will not be scored as a SKIP. Please let us know how this new method works for your projects.

We have had to simplify some of the harnessing; the combinatorics are threatening to overwhelm everyone. We
have made the simplifying assumption that if C90 is the target, then EGEN64 and PH_INT64 will not be defined. In
other words, if you are testing to the C90 standard, then EGEN will be built in the 32-bit version. If this isn’t what
you want, you will have to edit “flags.h” by hand, to specify EGEN64. Furthermore, the scripts make-c90,
make-c99, and make-c11 will automatically build all the TESTING targets iff you are not testing “freestanding”
(the fs option). You can edit the make-c?? scripts if you want other behaviors.

Also see “Testing the C features of a C++ Compiler, in Suite++ CONFORM/CTESTS” below.

New in cvs13a:

The 2011 revision of the C standard (ISO/IEC 9899:2011) is colloquially known as C11. In C11, there are eight
options: (1) Threads, (2) Atomics, (3) Variable Length Arrays (VLAs), (4) Complex numbers (as in C99), (5) IEC
559 floating-point semantics (Annex F – not yet tested), (6) IEC 559 complex (Annex G – not yet tested), (7)
Bounds-checking library functions (Annex K), and (8) Analyzable semantics (Annex L – not yet tested). An
implementation can conform to C11 without providing any of these optional features (whereas the C99 standard
required VLAs and complex numbers). To reflect these options, we’ve added suffixes on some of the case
numbers: atomics (AT), bounds-checking (BC), complex (CX), VLA(VLA). We’ve also re-structured the scoring,
so that C11 optional tests will be executed and verified for all options selected (thus producing ERROR messages
for any failing cases), but the total number of expected successes is indifferent to the selecting or un-selecting of
options.

We’ve attempted to place anything user-configurable into flags.h or sdutil.h, and to make defs.h invariant
across all environments; please let us know if we overlooked anything. In particular, flags.h will be the place to
select whether you are testing against C90 (which actually includes Amendment 1 from 1995), or C99, or C11 (and
your selection of the C11 options).

We have augmented some of our tools to better accommodate the diverse ways our clients use CV-Suite in their
overall testing program. The summary tool has, for several years now, printed “**” next to a file-name if there are
any “unexpected” testcase FAILs or SKIPs in that output file. This year we have added another feature to
summary: if in an output file (for example, abc.out) there are no lines that match the expected “***** N
successful” or “***** N error” format (e.g., output was interrupted by a core dump or segfault), then
“!!” is printed next to the file-name. Furthermore, if there is a file in the current directory named expected-
fails, then summary will now read that file, save each line, and if abc.out appears in the expected-fails
file, summary will just score all its testcases as “skipped and expected”, without printing any marks next to the file-
name abc.out. Furthermore, individual negtests (for example, n05002) can be put into the expected-fails
file, and when the file of negtests output is being read (n05.out, in this example), any failure on testcase n05002
will be scored as “failed and expected”.

Some of you create a new PHDST folder for each combination of compiler, option-flags, machine target,
optimization level, etc. Others use the same PHDST folder and run make clobber between test runs. If the
summary tool finds a file in the current directory named option-flags, (for example, containing the string
fpsimulation-O3), then every time summary searches expected-fails for a testcase name (such as
n05002), it will search for “fpsimulation-O3:n05002”.

We’ve decided recently that it’s better to place setup information into a folder that’s not underneath the PHDST
folder; that way, to completely clean the PHDST folder we can just execute rm –rf * in that folder (or the
equivalent in a graphical display like Windows Explorer). After some experimentation, we recommend using
$PHDST-setup (or %PHDST%-setup) as a folder name for the place to store setup information between test
runs. This is what is now provided in the envsuite (or envsuite.bat) startup script. We also provide a script
named save-setup (or save-setup.bat). So, to get started, edit three files: flags.h, envsuite, and
save-setup.

New in cvs12a: see “EXP Files (Expected Results)” re conform-c99.exp (etc.);change C9X to C99 everywhere;
fulltest is now make-c99 (etc.); dst.2 is dst-win; dst.3 is dst-ix; also see “Running the Suite”
New in cvs11a: see “Floating-point Comparisons” below
New in cvs10a: various bug-fixes.
New in cvs09a: see “Bounds-Checking TR” below
New in cvs08a: see “Bounds-Checking TR”, “Unicode Strings TR”, and “Expected NEGTESTS”, below.

Copyright Notice
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any human or computer language, in any form or by any means, without the express written permission of Plum
Hall Inc. Permission is granted for licensees of the Plum Hall Validation Suite for C to copy this document for
internal company use only.
 Trademarks
The Plum Hall Validation Suite for C™ is a trademark of Plum Hall Inc; CV-Suite™ is a trademark of Plum Hall
Inc; Plum Hall® is a trademark of Plum Hall Inc; other trademarks and registered trademarks are trademarks of their
respective owners. C is not a trademark, nor are the names of the software development commands such as cc.
Unpublished copyright © 1986-2016, by Plum Hall Inc All rights reserved.
Copyright © 2016, Plum Hall Inc., 67-1185 Mamalahoa Hwy #D104, PMB #372 Kamuela HI 96743
suites@plumhall.com

License
Please take the time to read the license that your organization has signed. It is a legal document, and the restrictions
apply to any persons using the product. Here is a brief summary:

• You may use the CV-Suite on any machine within a 2-mile radius of your Designated Site.
• Your Management Contact, or anyone designated by the Management Contact, may call Plum Hall for

consultation and advice.
• You need to notify us if you designate a new Management Contact, or plan to change your Designated

Site, or plan to change your company’s name.
• The CV-Suite is proprietary, confidential, copyrighted software. You must protect its confidentiality with

the same procedures you use to protect your own company’s confidential information.
• You may not disclose the detailed results of running the Suite, except as permitted in the License.

You may not take any form of copies of the Suite away from the Designated Site.

Thomas Plum authored a series of articles in Dr. Dobb’s about the C11 standard; see
http://www.drdobbs.com/cpp/232800444 	 (C11 overview, concurrency, etc.)	
http://www.drdobbs.com/cpp/232901670 	 (C11 security, Annex K, Annex L)	
http://www.drdobbs.com/cpp/240001401	 (Alignment, Unicode, ease‐of‐use features, C++	

 compatibility)	
or, slightly re-formatted, in	
open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3631.pdf

http://www.drdobbs.com/cpp/232800444
http://www.drdobbs.com/cpp/232901670
http://www.drdobbs.com/cpp/240001401

OVERVIEW
The Plum Hall Validation Suite is a set of C programs for testing and evaluating C language compilers. Each section
of the Suite within conform (standard conformance testing) builds on the correctness established by the previous
section.
This manual will explain how each section of the Suite works, how to configure the tests for your system, and what
assumptions are made about previous sections. The examples will illustrate the use of the Suite, and also
demonstrate how some of the sections work.
This manual is configured for Release 2016a (March 2016). Any up-to-the-minute changes or corrections (if any)
are to be found on the passworded Plum Hall support web site; refer to your support email from Plum Hall.
If you have never used the Plum Hall Validation Suite for C you need to read this manual. This is a large, extremely
configurable suite of test programs, it can provide you with a very powerful testing environment, but it usually takes
several hours to set up the first time.
If you get stuck, or have problems, don’t hesitate to call Plum Hall for technical support, we want you to succeed
with this project.

The Test Suite
The Plum Hall Validation Suite consists of the following sections:
CONFORM
This section tests basic conformance to the C Standard. by configuring the defs.h file appropriately. A compiler
can be compared with older levels of C or tested for conformance to the ANSI/ISO Standard for C. The C
functionality of a C++ compiler maybe tested by modifying the flags.h file in the destination directory.

OPTIONAL
This section tests for diagnosis of the undefined behaviors described in the C Standard. These diagnostics are not
mandated by the Standard but their detection by a compiler is an indication of Quality of Implementation
BENCH
Provides a small CPU-time benchmark
TESTING
The remaining sections are all found in one sub directory named testing
EXIN
The EXecutive INterpreter is a script language processor. When it is built and passes its own test set, the script
processing is used as a basic tool in subsequent sections of the Suite.
COVER
This section uses EXIN scripts to generate self checking C programs that test coverage of all permutations of
operators and data types. This section produces approximately 300 MB of generated C source.
LIMITS
More EXIN scripts that are used to determine the size of certain compile-time limits (e.g., significant length of
identifiers or how deeply include files may be nested).
EGEN
The Expression GENerator is a test program, written in C, which generates self-checking expressions of arbitrary
complexity. It is the tool used by the STRESS section.
STRESS
Since it is impossible to test all possible legal expressions, a sampling approach is taken. Under the control of EXIN
scripts, EGEN is used to generate complex self-checking expressions. These can be completely random, under the
control of a basic expression template, or driven from an EGEN script file.

TOOLS
Tools for use in different destination directories are provided in the directory trees named dst-win and dst-ix. Each

of these contains a sub-tree that matches the structure of the source directories in CONFORM and TESTING.

What You Need to Know and Do
In order to install and run CV-Suite, there are several things you need to know, and several things you need to be
able to do. If you don’t have this knowledge yourself, then you need to locate someone who knows these things and
is able to provide you with the information.
•	 You need to know how to use a text editor on each system you will be using.
•	 You need to know the basics of how to write and execute "script"’ (or "batch"’) files on each system.
•	 You need to know how much free disk space is available on each system. Thirty megabytes (30 MB) is
often enough. (Much more may be required for the complete installation under DOS or Windows on large-sector
drives.) If you don’t have much more, refer to the "Installing this Release" section later in this chapter; if you have
less, refer to the "Resources" section later in this chapter for details.
•	 You need to know some C programming, to customize certain files and to understand the general meaning
of the compiler diagnostics that may be produced by some of the nastier test cases.
•	 You need to know which compiler you are supposed to test, and what commands, arguments, environment
settings, etc., are needed in order to invoke the compiler you’re testing. (The compiler you’re testing is called the
target compiler.) You may also need to use a different compiler to compile the tool programs themselves. This is
known as the host compiler, and it may have its own commands, arguments, environment settings, etc.
•	 Similarly, you need to know how to invoke the target linker and the host linker, to link the object-files
produced by the compilers.
•	 Once the target compiler and target linker have produced an executable program to be tested, you need to
know how to execute that executable program. On some systems this is almost trivial; on others it involves
downloading from one machine to another, capturing output, networking the output back to the host machine, etc.

Running the Suite
There are many different modes in which you can use the Plum Hall Suites:

• Script or batch command files for the compiler linker, etc., or line-by-line individual commands.
• Using your own harness, or using make (This keeps objects and executables around for faster re-compile).
• Host compiling (host and target compiler are the same) or cross compiling (host and target are different).
• UNIX platform, or Win32 platform, or some other platform.
• Hosted implementation (with library support), or freestanding implementation (e.g. embedded system,

minimal library).
We have packaged the C Suite (and the C++ Suite) so that any set of these choices can be made.
The 2011 C standard incorporates new features and the accumulated interpretations (defect reports) of the ISO C
1999 standard, as well as ; use the buildmax script, which will compare results against the conform-c11.exp (or
conform-c11-fs.exp for “freestanding”) expected-results file. Be sure that the C11 macro is defined in your flags.h
header.

The 1999 C standard incorporates new features and the accumulated interpretations (defect reports) and amendments
of the original ANSI C 1989 (i.e. ISO C 1990); again, use the buildmax script, which will compare results against
the conform-c99.exp exp (or conform-c99-fs.exp) expected-results file. Be sure that the C99 macro is defined in
your flags.h header.
Some clients and agencies have used only the C90 (plus Amendment 1) requirements, as of our most recent
information. That covers only the features of the original ANSI/ISO C, plus ten years' worth of corrections for those
features; again, use the buildmax script, which will compare results against the conform-c90.exp (or conform-
c90-fs.exp) expected-results file, define the C90 macro in your flags.h, and un-define the C99 macro. Further, you
should consider each specific DISALLOW flag in flags.h, and determine whether it should be set for your specific

implementation. For example, if you are testing a C90 implementation that omits the 1995 Amendment 1 features
(like digraphs), you need to be sure that the “C90” portion of your flags.h specifies

#define DISALLOW_DIGRAPHS 1

CONFORM
The CONFORM section of the Suite tests a compiler for conformance to the C Standard.

The CONFORM Tests
The CONFORM section consists of five C programs that test all of the required features of the language,
preprocessor, and libraries as follows:

Each sub-section of the standard has a corresponding function in the LANG or LIB program. Each program uses
utility routines for checking that two integers are equal (iequals), that two addresses match (aequals), etc.
Errors are reported by writing a message of the form:

ERROR in c5.c line 234: (12) != (13)

Each program prints a summary in this form:
***** Reached first test *****
***** 999 successful tests in LANG *****
***** 2 errors found in LANG *****
***** 3 remarks found in LANG *****
***** 3 skipped sections in LANG *****

Skipped Sections
A "skipped" section results from compiling with a flag such as SKIPch62 which causes all tests in ch62.c to be
skipped, or SKIPch621 which causes all tests in the ch621 function to be skipped. You can record the reasons for
each compile-time skipped case or run-time failure. In your flags.h file, you can add a definition to some compile-
time flags, such as

#define SKIPch621 our parser error
#define FAILch622 Plum Hall bug?

Once you’ve categorized your skips and fails in this way, the strings you defined will show up in the execution
output, something like this:

#SKIPPED: ch621 (>our parser error<)
	 #FAILED: ch622 (>Plum Hall bug?<)

The “unexpected” skips and fails will show up with the distinctive string “(><)” attached to each “unexpected” skip
or fail. This makes it much easier to re-run the test suite after you’ve made compiler changes, because you can
quickly search for the “(><)“ string in the output to see if any new errors have appeared.
Running the CONFORM Programs
The previous Section described the configuration process. Once configuration is completed, you are ready to
compile and execute the CONFORM programs. Any compile errors reported may represent currently-unimplemented
syntactic features, or bugs in your compiler, or bugs in the Suite. Or, don’t forget, sometimes a compile error means
that the compiler wasn’t properly installed, or that you weren’t told the proper command-line options to use, or that
the compilation environment wasn’t properly set up. You have to investigate all these possibilities.

ENVIRON tests Section 5 of the Standard.

LANG tests the basic language and preprocessor. It is organized according to the
section numbers of the ANSI standard document, but will only test features
according to the selected language level.

PREC1,PREC2 test operator precedence. All C language operators are tested in all possible
pairs to test that the precedence is handled correctly.

LIB tests the C library. The organization follows the ANSI/ISO Standard

If you are unable to trace the cause of any compile errors whilst building CONFORM, you should telephone, fax or
email Plum Hall for assistance.

File Naming Conventions
The file names and function names are all keyed to the section numbers of ANSI/ISO 9899:1999. This is simply
achieved by concatenating the digits from the relevant section number to form a filename. Thus, file ch61.c deals
with section 6.1 of the Standard.
Since identifiers (and, in some operating systems, file names) have to start with letters, a prefix is applied. The
actual prefix used is defined by the nature of the file or function:
ch6 section 6 of the Standard;
ch7 section 7 of the Standard;
n files in CONFORM/NEGTESTS containing "mandatory" diagnostic situations—syntax or constraint errors;
q files in OPTIONAL/OPTAUTO containing "quality" diagnostic situations—undefined behaviors of one sort or
another.
Bounds-Checking TR (now Annex K of C11)
The C standards committee (JTC 1/SC22/WG14, working closely with the US committee PL22.11) developed a
Technical Report “Extensions to the C Library – Part 1: Bounds-checking interfaces”, also known as the “Bounds-
Checking TR”. The TR is available through your channels for ISO standards as TR 24731-1, and a recent draft is
found at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1225.pdf. All sections of the TR are now tested in
CV-Suite in ch7*.c. To enable the new tests, put into your “flags.h” file a new definition for #define
__STDC_WANT_LIB_EXT1__. These library functions have become an optional part of the C11 standard.

Unicode Strings TR (now part of C11)
The C standards committee (JTC 1/SC22/WG14, working closely with the US committee PL22.11) developed a
Technical Report “Extensions for the programming language C to support new character data types”, also known as
the “Unicode Strings TR”. The TR is available through your channels for ISO standards as TR 19769, and a recent
draft is found at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1040.pdf. Some sections of the TR are now
tested in CV-Suite in ch7_24f. To enable the new tests, put into your flags.h file a new definition for
#define WANT_NEW_UNICODE_STRINGS. These features have become a required part of the C11 standard;
they are also a required part of the C++11 standard .
Tracing
There is an extensive "trace" capability; Many of the routines in util.c receive a line-number argument (e.g.,
iequals). Each of these routines will, if the global variable Debug is non-zero, print a diagnostic trace to the
standard-error output.
This trace keeps track of the source-file and line numbers of all statements reached.
The environ program will set Debug to non-zero if environ is invoked with two command-line arguments. (Its
first command-line argument must be a "1".)

Each of the other executable programs in CONFORM—lang, prec1, prec2, and lib—will set Debug to
non-zero if the program is invoked with any command-line argument. Thus, to execute the lib program with
debug-tracing, you should execute lib debug .

Floating-point Comparisons
Up through 2010, if the user defined the FREESTANDING macro, then CV-Suite made no use of the compiler’s
library. However, we have encountered problems in the comparison of floating-point numbers when one or both of
the values is NaN. There is now a macro IS_NAN(x) in flags.h which produces an invocation of the C99
library function isnan(x). This macro is invoked in several floating-point comparison functions in util.c,
so that if an obtained result and the expected result are both NaN, the comparison is scored as a successful match.
If your target compiler does not support the C99 isnan(), then you must provide a different definition for
IS_NAN(x). For example, you could #define IS_NAN(x) (!((x)!=(x)) && !((x)==(x)))

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1225.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1040.pdf

(depending upon your compiler’s floating-point operations). If there are no NaNs in your target environment, you
could define IS_NAN(x) as zero.

In util.c, when the FREESTANDING macro is not defined, the printing of comparison errors will make use of
the target compiler’s snprintf function. If the target compiler’s library does not provide the snprintf
function, you could modify util.c to perform the FREESTANDING logic instead; or you might #define
snprintf _sprintf_s (or any other implementation-defined alternative; or you could modify util.c to use
the sprintf function in place of snprintf.

When CV-Suite is being used to test conformance to an ISO standard, then the decisions of the ISO C committee are
relevant to the required accuracy of floating-point comparisons; specifically, there is no mandate for any specific
level of required accuracy. Over the past decades, the marketplace has generally accepted the criteria used in CV-
Suite. When double or long double values are being compared, the comparison is by default performed at
float resolution, with a permissible fuzz named FDelta. If the double or long double values would not
compare equal in full precision, using the more restrictive fuzz named Delta, then a purely informational note is
printed.
However, when CV-Suite is being used for internal QA purposes, you can compare double or long double
values with their full precision, by modifying util.c to initialize test_full_dequals_ldequals to a
nonzero value.
In making these changes, we have made several other changes to the floating-point comparison routines, but none
those changes are intended to have user-visible consequences. As always, contact support@plumhall.com if
you have corrections or suggestions.

Negative Tests in NEGTESTS
The Standard categorizes certain constructs as erroneous (or at least non-portable); in CONFORM/NEGTESTS (and
in OPTIONAL/OPTAUTO) there are many little negative testcases for assessing the diagnostic messages of your
implementation.
Here is an example from conform/negtests/n01.in:

/* #013 C90 6.1.2 C99 6.4.1	 	 CONSTRAINT-MANDATORY */
 /* 	 keywords are reserved (in phases 7+8 language syntax) */
int main() {
	 {char *break; }
	 return 0; }

This refers to a specific subclause from the ANSI/ISO C standard, namely 6.1.2 in the C90 version and 6.4.1 in the
C99 version. The category of the requirement is "CONSTRAINT-MANDATORY", and the underlying category of
the standard is a “constraint”. The testcase is the 13th testcase in the file, as indicated by “#013”. The initial
comment is followed by the contents of the testcase.
Note that the Standard allows diagnostics to be generated by any phase of the translator, including the linker. You
may, therefore, need to perform a compile-and-link to produce a required diagnostic.
The files n01.in through n10.in are concatenations of the test cases for each Section.

The script file section (or section.bat) controls the automated execution of sections of the negative-tests.
For example,

section n01

splits n01.in into individual .c source-files (using the unarc tool), compiles each of these files to produce
a .clg (for "compile log") message output file, then runs score to count how many diagnostic messages were and
were not produced, producing a .out output file. Note that the input file n01.in contains testcases up to C99
subclause 6.4; n05.in contains testcases for C99 subclause 6.5, n06.in covers 6.6, etc., up through n10.in for
subclause 6.10.
(The score program uses the gotdiag.h header that you configured when installing in order to determine just
what counts as a "diagnostic message" in your environment.)
There is a kludge involved in section: in order to control the whole process using capabilities that are present in
ordinary command languages (such as shell and COMMAND.COM), the score program creates, for each source-file

(e.g. n01001.c), another (empty) marker file (e.g. n01001) to satisfy a wild-card match loop line in the
section script. These files are removed at the end of executing section.

Expected NEGTESTS
The summary utility program distinguishes “expected” failures from “unexpected” failures, but in order to do so,
some user input is needed. For the positive tests, we have for many years provided the opportunity to put “FAIL”
flags in “flags.h”, but no corresponding method was available for negative tests. Now, for each NEGTEST
component (such as n05) you can provide a list of expected failures in a “.exp” file (such as n05.exp),
formatted as a sequence of three-digit case numbers, each terminated by a comma (including the final one). Thus if
you know that your compiler will produce no diagnostics for cases n05003, n05008, and n05017, you could
create a file in your destination NEGTESTS directory named n05.exp containing just one line:
“003,008,017,”. The score utility program will read this file, and on each “NO DIAGNOSTICS” message it
will append the string “(>expected<)”. The existing summary utility program thus categorizes these test cases as
“expected” (i.e., not “unexpected”) when it tabulates the test results.
Capacity Tests in CONFORM/CAPACITY
The file capacity.c meets all the translation-environment limits provided in C99. It should compile without
errors, and produce the output message:

SUCCESSFUL EXECUTION
***** 1 successful test in CAPACITY *****
***** 0 errors found in CAPACITY *****
***** 0 remarks found in CAPACITY *****
***** 0 skipped sections in CAPACITY *****

Testing the C features of a C++ Compiler, in Suite++ CONFORM/CTESTS
We have started to provide a flags.h file, and a makefile, for testing the C behaviors of a C++ compiler.
These tests will be built in the CONFORM/CTESTS subdirectory under your Suite++ destination directory. When
you have located this subdirectory, copy (from your CV-Suite sources) the file dst-ix/ctflags.h to flags.h
in that subdirectory, and copy dst-ix/ctmake to makefile, in that subdirectory (for Windows, copy from
dst-win). We have configured the tests for cvs16a (and subsequent releases) to incorporate the C++ feature flags
(CXX03, CXX11, CXX14); you must edit the flags.h file to choose your C++ standard.

Expression Tests in CONFORM/EXPRTEST
The EXPRTEST directory contains about one megabyte of selected outputs from the EXIN and EGEN components
of the Suite. These are complete C source files, ready to compile and execute, which test the expression-code
generator of your implementation. Further testcases of the same sort are provided in the EXPRTEST.95 and
EXPRTEST.98 directories.

Summarizing the results from CONFORM
When you have tried all the components of the CONFORM section (or at any time you like), you can compare your
obtained results against the expected results by executing, in the destination root directory, the command

make-summary

which will summarize the results against your choice of expected-results files.
The output gives a detailed list of numbers of tests expected, succeeded, failed, skipped, unexpected, and missing.
The number of “unexpected” equals the total of failed and skipped, minus the number of “expected” errors,
recognized by the presence of text between the “(>” and “<)” markers.

Checklist for CONFORM

Make a destination root directory

Verify sufficient free space on destination drive

Copy dst-ix or dst-win into destination root

Determine the target compiler, its flags, and its invocation

Determine the host compiler, its flags, and its invocation

Edit envsuite for appropriate flags

Edit compiler

Edit linker

Edit hocompil

Edit holinker

Edit flags.h

Edit other scripts? execute, section, cleanup

[If target not ANSI/ISO] configure defs.h, compil.h, machin.h

[If host not ANSI/ISO] configure hodefs.h, hocompil.h, homachin.h

Edit gotdiag.h to recognize target compiler’s diagnostics

"Source" the envsuite (or envsuite.bat)

Type set to verify correct environment settings

Invoke make all to build tools programs

When txtchk is built, verify checksums back in source root

Run buildmax all to run all the CONFORM tests

Open a second window in the source directory, to look at sources

Edit flags.h with "skip flags" to "work-around" compile errors

Tabulate results, using make-summary

Deliver our results, and celebrate

EXP Files (Expected Results)
There are several .exp files associated with the test suite these are summaries of expected results, but all have
specific uses as described below:

UNIX considerations
If you are on a UNIX platform, you may need to execute the chmodall script:

	 sh chmodall

in order to mark all your script files as executable files. (It can’t hurt, whether needed or not.)
When you edit these script files, note that the comment notation ### indicates something that you may need to
modify— compiler-specific logic in a script, or system-dependent name formats, etc.
DOS considerations
The scripts and makefiles need three commands which are common on UNIX but not standard on MS-DOS: cat,
rm and cp. We have written work-alike C source files named phcat.c (for ``Plum Hall cat”), phcp.c (for
``Plum Hall cp”), and phrm.c (for “Plum Hall rm”). The makefile in dst-win will compile these to produce
exe files (phcat.exe, phcp.exe, phrm.exe). After building each of these exe files, the makefile
invokes a “setup” script (setup-cat.bat, setup-cp.bat, setup-rm.bat). Using “cat” as an example,
the setup script determines whether a command named cat is already available on this system. If not, it copies
phcat.exe to be named cat.exe, so that any further invocation of cat will invoke this exe file.

Makefiles
If you are using scripts (as described above) your makefiles will need very little customizing. Be sure to define
the environment variable PHMAKE, to define the name (and arguments if desired) of your make utility, such as
nmake , or make –k , etc.

All the file-name extensions are parameterized as macros taken from the external environment.
For example, the makefile rules governing object-files will use the $(OBJ) macro read from the external
environment (which were put there by the envsuite script when you started working in this destination tree).

All of the specific actions in the distributed makefile are expressed with the scripts (as described above)
compiler, linker etc.

Each directory of the Suite has its own makefile.

Many versions of make will accept a -k flag, which tells make to keep trying; if make encounters errors on one
production, it goes to another one, so long as it does not depend upon a prior unsuccessful production. This is
preferable to marking actions as optional (with leading hyphen) because productions that depend upon the result of a
failed step should not be started.
Using BUILDMAX to Execute all Makefiles
When you have configured for your choices of environment, you should be ready to execute the makefile that
you find in each directory.
After each individual makefile has been tested, the buildmax command can be used to iterate a command over
the makefiles in each of the conform directories: (The buildmax command uses the PH_STD variable from
envsuite to determine which standard should be tested.)

conform-c90.exp
conform-c90-fs.exp	

Expected results for conformance against ISO 9899 :1990 and
ANSI C X3.169.1989, including ISO Amendment 1 and the Technical
Corrigenda TC1, TC2, and TC3. (The “-fs“ tests are “freestanding”.)

conform-c99.exp
conform-c99-fs.exp

Conformance tests against ISO 9899:1999. (The “-fs“ tests are
“freestanding”.)

conform-c11.exp
conform-c11-fs.exp

Conformance tests against ISO 9899:2011. (The “-fs“ tests are
“freestanding”.)

	 buildmax all 	 	 Rebuilds all makefiles.

	 buildmax clean 	 	 Cleans up everything but the pgm.out outputs

	 buildmax clobber 	 	 Removes even the .out and .log files

The same options are available for the make-c90 command (for the pre-C99 tests), the make-c99 command (for
the C99 tests), and the make-c11 command (for the C11 tests). But these commands require an explicit argument
for the freestanding tests, e.g.

make-c11 fs all 	 	 Rebuilds all makefiles for FREESTANDING test

Separate Directory Trees
Keeping the intermediate files and results in a tree separate from the sources allows simpler configuration control.
As you work with the harness, there is always only one active hosted compiler, which you use for building tools, and
one active target compiler, which you use for running the tests.
You choose the active compilers, and their associated environment variables, by executing envsuite.
Working on a multi-window system
If your environment allows you to open several different windows, you may find it easier if you use one window to
work in the source tree, and use another window to work in the destination tree. See the earlier discussion in An
Example Session.
Distribution
Directories In the C Suite (and in the C++ Suite), we provide two separate trees:
dst-win	 	 	 a Microsoft Windows destination directory

dst-ix	 	 	 UNIX destination directory,

each of which has a structure that matches the overall Suite.
So, to get started with testing a new compiler, make a directory or your own destination (e.g. dst), and do a
recursive copy of the most suitable, dst-win or dst-ix, to your dst directory.

Configuring Files in the Destination Directory
Once installed, change directory to your dst directory, and hand-modify the script files that you find there (as
described above).
Besides the scripts, you will need to configure these other files that are in your chosen dst directory:

Setting the ENVSUITE environment
Each time you change directory into a particular destination tree, it is very important to source the envsuite script
of that particular tree to establish all the necessary environment variables. This operation exports the environment
variables into your interactive shell.
You do this in different ways depending on your operating system:
o For DOS, you simply type envsuite

o For Bourne shell, use the dot command: . ./envsuite

gotdiag.h	 specifies how to tell whether pgm.clg contains a "diagnostic
message" (as required for the error-tests cases)

hocompil.h characteristics of host-compiler (if different from target compiler)

homachin.h characteristics of host-machine (if different from target machine)

hodefs.h flags for hosted compilation (if different from defs.h)

Compiling the TOOLS Programs
When you make all in the top-level destination directory, you will build all the executable harness tools that are
supplied with the Suite:

These same tools are also distributed with Suite++, the Plum Hall Validation Suite for C++. All of them are capable
of being compiled as C; some of them must be compiled as C.
Producing a Summary of Results
The summary tool scores your results against an expected-results file (see “EXP Files” above). It is invoked in
this fashion:
	 summary –f conform-c99.exp >conform-c99.sum

The resulting conform-c99.sum file might look something like this:

EXPECTED ACTUAL ERRORS SKIPPED UNEXPEC FILE NAME Plum Hall CV-Suite 16a
 1 MISSING conform/capacity/capacity.out
 20 20 0 0 0 conform/environ.out
 59 58 1 0 1 **conform/lang.out
 7742 7740 0 2 2 **conform/lib.out
 1642 1642 0 0 0 conform/prec1.out
 2413 2413 0 0 0 conform/prec2.out
 37 7 30 0 9 **conform/negtests/n01.out
 [...]
 21 21 0 0 0 interps/interp94.out
 46040 45739 292 9 18 TOTAL

The first column (“expected”) gives the total number of test cases in that one output file. The second column
(“actual”) gives the number of test cases completed successfully. The third column (“errors”) gives the number of
test cases that failed. The fourth column (“skipped”) gives the number of test cases that were skipped (using the
SKIP flags in “flags.h”). The fifth column (“unexpected”) gives the number of unexpected fails and skips.
The sixth column (“file name”) gives the name of the output file being scored. If that output file had unexpected
fails or skips, the name is prefixed with two asterisks (“**”). If that output file was never produced, the “actual”
entry is shown as “MISSING”; see the entry for capacity.out in the example above.

As you see, the summary tool gives a quick overview of the test results, and shows which output files might need
more detailed scrutiny to understand the problems revealed by the suite.

Timings and Sizes
In all these instructions, we assume that you have a system such as MS-DOS or UNIX which has a hierarchical
directory structure. If not, you will need to alter the procedures whenever directories are discussed. This will greatly
affect the time taken to install and configure the suite.
After installation you will have these directories:

unarc extract individual negative-test .c files from .in files

score check for presence of diagnostic messages in errauto output

summary tabulate all Suite outputs, compare with expected counts

txtchk verify checksums for files

 Directory Description

../cvs16a the "home" Suite directory

Configuration Time
If you use the script approach to harnessing the Suite, it may take you from an hour to half a day to create your
scripts the first time. (UNIX scripts are the easiest and quickest, other systems have more warts to work around.)
When you have properly configured your host-compiler, compiling the tool programs should take two or three
minutes, tops.
If your compiler has good error recovery, and doesn’t ‘bomb out or hang-up’ when the Suite says nasty things to it,
compiling the programs in CONFORM takes only several minutes.

Running the CONFORM sub-directories may take a few minutes more to extract, compile, and score all the programs.

An Example Session
Before describing all the details of configuring and running the Suite, we’ll take you through a hypothetical example
session.
Let us suppose that we are working together in a laboratory that has two machines to be used in the testing, a file
server UNIX Server, and a UNIX workstation UNIX Box gamma networked to the server.
Dual UNIX System Example Configuration
Installing and running the Suite might go something like this.
We login on the Server, and make a directory (~/PlumHall/cvs22a) where we want to store the original
sources. (We’ll refer often to this directory; it is the source root directory.)
Then we extract the distribution into the source root directory; refer to instructions that came with the distribution.

 ./doc documentation directory

 ./bench sample benchmark programs

 ./dst-win destination tree for some Win32 compiler

 ./dst-ix destination tree for some UNIX compiler

./conform all the official conformance tests

exprtest tests the expression code-generator

exprtest.95 tests the expression code-generator

exprtest.98 tests the expression code generator

negtests tests required diagnostics

errauto “old” C90 diagnostics tests

capacity verify compiler meets capacity requirements

./interps tests "Defect Reports"

./optional 	 suggested but not mandated by the Standard

./legacy Obsolete files, no longer used

./testing/exin the Executive Interpreter

./testing/egen the Expression GENerator

./testing/limits probe capacity limits

./testing/cover Generate self-checking expression tests

./testing/stress endless expression-testing

[server]: cd ~/server/PlumHall/cvs22a

If we already have a copy of the Plum Hall checksum program on the server, we execute it now. Its output shows
that the installed files agree with their expected checksums:
[server]: txtchk -f cvs22a
CVS22a_2016-03-31
Files are installed correctly.

If we don’t already have an executable copy of the txtchk tool, we will soon be building one, and we can use it
when we build it. (For Windows and MS-DOS systems—for the rest of this example just "DOS"—an already-built
txtchk.exe is available in dst-win .)

Now that the sources are in the source root, and their contents are verified, we’ll make them read-only so that we
don’t subsequently alter them during our testing.
[server]: pwd	 	 	 # be sure we’re in source root
~/PlumHall/cvs22a 	 	 # yes, that’s it
	 	 	 	 	 # now make files executable
[server]: cd dst-ix; sh chmodall; cd ..
	 	 	 	 	 # and non-writeable
[server]: find . -type f -exec chmod -w {} \;

(For DOS, use dir and attrib.)

Now we walk over to our first target machine, the UNIX system gamma, and login there. This gamma machine
has a compiler called acc which we are supposed to test using the Plum Hall Validation Suite for C. Then we make
a directory to work in.
This is our destination root directory, and we cd to that directory. (In recent years, we have settled upon a
convention of naming the destination root directory as “CVSversion –CompilerName – StandardVersion”, but any
choice of destination root name is ok as long as you are consistent.).
 [gamma]: mkdir ~/PlumHall/cvs22a-gcc-c20

 [gamma]: mkdir ~/PlumHall/cvs22a-gcc-c20-setup

 [gamma]: cd ~/PlumHall/cvs22a-gcc-c11

Next, we want to copy the entire dst-ix tree from the source root over to our new destination root:

[gamma]: cp -rp ~/PlumHall/cvs22a/dst-ix/* .

(For DOS, use xcopy with at least the /s and /e options.)

All the executable tool programs will be built in the destination root directory, and most of the configurable files
(headers, scripts, etc.) also reside in the destination root.
Now we start configuring, so we can test the acc compiler. It’s supposed to be a fairly robust, stable compiler, so
we’ll use it for our host compiler (to build our tools) as well as for our target compiler (to be tested).
There are three files that need to be edited, so we show them here as one recipe. We have drawn a box around this
command; you will execute this command so frequently that it is worth memorizing. (On DOS, use your editor,
perhaps incorporated in your compiler’s IDE, or edit.exe or notepad.exe.)

In the save-setup file, all we need to do is change the destination root to our own choice, and delete some line(s)

 PHDST=~/PlumHall/cvs22a-gcc-c20

In the flags.h file, we un-comment the line corresponding to our choice of the target standard (C90, C99, or
C11).

Next, we edit the environment setting file, envsuite (envsuite.bat in DOS), filling in the information
required in order to run our acc compiler:

[UNIX]vi save-setup flags.h envsuite

[DOS] vi save-setup.bat flags.h envsuite.bat

export PH_VSNAME=cvs22a
export PH_CCNAME=gcc
export PH_STD=c11

export PH_FREESTANDING=

export PHDST=~/Plumhall/cvs22a-gcc-c20
export PHSRC=~/PlumHall/cvs22a
 […]
export PHCFLAGS="-c -SPECIAL_acc_FLAG"
export CFLAGS=$PHCFLAGS
 […]
export PHCC=gcc
export PHHOCC=gcc
export PHCCONLY=-c

export PHLFLAGS=-lm

export LFLAGS=$PHLFLAGS
export OBJ=.o
export EXE=
 […]
export HOCFLAGS="-c -SPECIAL_acc_FLAG"
export HOLFLAGS=-lm
export OBJHO=.o
export EXEHO=

 (How did we know what flags to use? See "What You Need to Know" above; someone familiar with acc had to tell
us the proper flags for using acc.)

At this point, we need to run the save-setup script, so that we have saved the setup files.

 [gamma]: sh –x save-setup

Next, we have to look at some script files named compiler, linker, hocompil, and holinker. (In general,
the DOS "script" versions are batch files with .bat appended.) We’re lucky; the scripts as delivered invoke the
compiler using the environment variables $PHCC and $PHHOCC which we configured in our envsuite file.
(You’ll need to know how script files work, and how your target compiler is invoked, in order to know what changes
need to be made to the script files as delivered.)
There are also some files to be copied into destination root from the source root, such as conform-c90.exp,
conform-c99.exp, conform-c11.exp. There are the files of expected results that we will later compare
our results against.
There are some other script files that sometimes need to be configured; see the Scripts section later in this chapter
for details. But on most UNIX system platforms, the compiler and linker scripts are the only ones you might need to
modify.
There are some header files in the destination root that might need to be configured. But we’re told that the acc
compiler is a fully ANSI/ISO compliant compiler, so we don’t need to configure anything in the compil.h, or
machin.h header files.

There is one header that always has to be checked. It is called gotdiag.h (got a diagnostic?), and it is used in the
score tool that scores whether the target compiler produces diagnostic messages for all the deliberately erroneous
negative-test files.
We need to find out how one can tell, looking at the output of our acc compiler, whether a diagnostic message was
produced. It’s not enough just to ask whether the compiler-output file is non-empty; the compiler always produces a
copyright banner © Copyright GAMMA Hypothetical Software, 2016.

At this point, we have to discuss this with our company’s compiler experts. We find out that the only way to tell that
acc produced a diagnostic is to look for the characters “error” or “warning” in the compiler output, and the

header gotdiag.h already searches for these words. (As delivered, the gotdiag.h header is usually adequate,
but it is important to check.)
If we previously required further customizations, and we saved those changes in our “setup” folder (typically named
~/PlumHall/cvs22a-gcc-c20-setup), then this is the time that we should restore those customizations
(typically by copying some files from ~/PlumHall/cvs22a-gcc-c20 to ~/PlumHall/cvs22a-gcc-
c20-setup).
Now we’re ready to build the tools programs. Before we start any testing session, we have to source the
environment variables in the envsuite script.

We’re using the Bourne shell, so we type
[gamma]: . ./envsuite

(On DOS, we execute envsuite.bat.)

Now that we have executed the envsuite script (which on Unix/Linux marks commands as “executable”), we can
save the files we have modified (flags.h and envsuite) by simply typing:

[gamma]: save-setup

Just for reassurance, we type set to look at the environment settings. (The set command works similarly in
DOS.)

[gamma]: set

CFLAGS=-c -SPECIAL_acc_FLAG
EXE=
EXEHO=
HOCFLAGS=-c -SPECIAL_acc_FLAG
HOLFLAGS=-lm
LFLAGS=-lm
OBJ=.o
OBJHO=.o
PATH=.:~/PlumHall/cvs22a-gcc-c20:/bin:/usr/bin
PHDST=~/PlumHall/cvs22a-gcc-c20
PHSRC=~/PlumHall/cvs22a

This looks good, so we’re ready to build the tools. We invoke make, and make prints out the commands it’s
executing. (For DOS, the compiler environment would determine how make is used.)

[gamma]: make all
hocompil score ~/PlumHall/cvs22a ~/PlumHall/cvs22a-gcc-c20
gcc: program not found
make terminated

Whoops, some kind of problem has surfaced. The make program says it can’t find the acc program. We do some
quick research, and discover that we have to add another directory to our PATH variable. So we once again edit the
envsuite script, adding /gamma/special-bin to the initialization of PATH. Then we have to once again
source the envsuite script (and save the modified script):

[gamma]: . ./envsuite
[gamma]: save-setup

Now we once again run make all, and everything runs successfully. All our tool programs are built, including the
"textfile-checksum" program named txtchk. Just for good measure, we’re going to change directory over to the
source root, and repeat the txtchk checks there, as we did a few pages ago.

With the tools programs all built, we’re ready to start the real testing. We will start by changing directory to the
conform directory, and building one of the test programs that almost-always works correctly the first time, the
first “precedence” program, prec1.c, which we pronounce here as “press one”):

[gamma]: cd conform
[gamma]: make prec1.o

Often, the very first compile terminates quickly, with an error message complaining about not being able to find
some header file. Usually that kind of problem is fixed by adding all the necessary header-file directories to the
“compiler flags” environment variable PHCFLAGS. When compilation is successfully producing prec1.o, we can
go on to linking and executing:
[gamma]: make prec1.out

Then we can compile, link, and execute everything in the conform directory:

[gamma]: make all

Now come a few dozen lines of output from make. Suddenly it stops. A compile error has terminated the
compilation of one of the files, the file ch6_10.c in the conform directory. We want to edit the compiler output log
for ch6_10; it’s named ch6_10.clg

[gamma]: vi ch6_10.clg
DIAGNOSTIC: ch6_10.c, line 421: undefined __STDC__

This sounds like a problem to be investigated; the special macro name __STDC__ is supposed to be predefined in
any ANSI/ISO C compiler.
Meanwhile, we have to find a work-around so that we can continue.
Let’s go look at the source code inside ch6_10.c. We’ll keep one window in the destination tree, and the other
window over in the source tree. Here’s what we do in the source window:

[gamma]: cd /gamma/mine/dst-ix # start at destination root
[gamma]: . envsuite # source the environment settings
[gamma]: cd /server/PlumHall/cvs16a
 # go over to source root on server
[gamma]: cd conform # cd to conform subdirectory
[gamma]: vi ch6_10.c # edit the original source file

What we find in ch6_10.c is that we can "skip" the contents of this file if we can #define a flag called
SKIPCH6_10. Back over in the destination root there is a header file called flags.h. Any #define s that we edit
into "flags.h" will be #include’d into each compilation

In our destination window:
[gamma]: vi ../flags.h # edit the compile-time flags file
#define SKIPCH6_10 1
:wq
[gamma]: save-setup
[gamma]: buildmax

Let’s suppose that we are now so lucky that everything else runs smoothly to completion. We can obtain a summary
report of all our results, using the summary tool and the conform-c11.exp (or conform-c99.exp, or
conform-c90.exp) file of expected results, in the destination window:

[gamma]: make-summary
[gamma]: cat conform-c11.sum
EXPECTED ACTUAL ERRORS SKIPPED FILE NAME CV-Suite 16a 2016-03-31
 1 1 0 0 conform/capacity/capacity.out
 20 20 0 0 conform/environ.out

 21 21 0 0 interps/interp94.out
 46040 46029 10 1 TOTAL

From this, we see that there are 10 run-time errors, and one skipped section (presumably the ch6_10 section that
we skipped). We will deliver this conform-c11.sum summary, along with the detailed .out output files, to the
compiler group which is responsible for interpreting the results. We, for our efforts, deserve a lunch break.

Files to be Configured
There are several header files that may need to be configured:

compil.h specifies syntactic and semantic features of the compiler

Once defs.h (with compil.h and machin.h) have been successfully configured, they will be used by all
components of the Suite, both tools and tests. Each directory has a makefile that might require adjustment to suit
your environment.
Configuring defs.h
The files compil.h and machin.h define several preprocessor variables with values that are appropriate to strict
ANSI C. Among other things, they define the macro name ANSI to 1. In a full ANSI environment, no further
customization should be needed or allowed, since the standard headers <limits.h> and <float.h> specify all
that is needed about the nature of the machine.
If you are testing compilers that are not strict ANSI/ISO C, look at the further configuration details in the Section on
Configuring Headers.

Testing a Freestanding Environment
The Suite components are structured so that a freestanding environment can be tested with a minimum of special
configuration.
You should add this line to defs.h and flags.h:

#define FREESTANDING 1

In the destination root directory, you should configure the file sdutil.h. This file contains the only remaining
hosted environment assumptions about the availability of file I/O. Revise it to accommodate the method you use to
get output from your in-circuit emulator, simulator, or whatever.
In the header sdutil.h, the function pr_ok takes one argument, a char string named s that must be sent to the
external environment. In a hosted environment with files, the argument s is simply sent to the standard output using
fputs; but in an embedded environment, use the appropriate interface of the simulator or the testbed.

 The function setzero exists in order to prevent the compiler’s optimizer from recognizing that the global integer
variable named Zero is, in fact, always equal to zero. The version of setzero provided in sdutil.h attempts
to fopen a file (which is fact does not exist) and to read a value for Zero. The simplest replacement for
setzero is a simple empty stub. Whether anything further is needed will depend upon the goals for the testing,
and the requirements for certification, if any.

Scripts
Using scripts or batch files for compiler, linker, etc., simplifies many aspects of executing the suite in varying
environments. For example, many QA departments need to routinely re-execute the Suite using dozens of different
compiler flags and options.
Using an unchanging set of compiler scripts, and just changing the flags and options in one script, or just setting the
flags into environment variables, allows routine re-running of the Suite.
Here are the scripts that you may need to modify:
compiler pgm src-dir [inc-dir...]

Compile pgm, found in src-dir; headers also from inc-dir. Put output, especially diagnostic messages,
into pgm.clg

hocompil pgm src-dir [inc-dir...]
Host-compile pgm, with src-dir and inc-dir as above. Put output, especially diagnostic messages,
into pgm.clg

machin.h	 specifies machine-dependent characteristics, such as the range of
integer data types

defs.h	 defines useful macros, as well as #including both compil.h
and machin.h

makefile specifies the rules for building the components of this directory

linker main-obj [lib-obj...]
Link object-modules to produce executable main program. Put output, especially diagnostic messages, into
pgm.llg	

holinker main-obj [lib-obj...]
Host-link object-modules to produce executable main program. Put output, especially diagnostic messages, into
pgm.llg

execute pgm [arg...]
Execute target program pgm, capturing standard-output in pgm.out (When cross-compiling, this may
involve networking executable pgm to development system, remote execution, and networking results back into
pgm.out.)

cleanup
Remove object files, executable files, intermediate files, etc.

section archive src-dir
In negative-tests directory, unarchive and test one section of negative tests; score the results into output
archive.out.

make-summary
 Using the appropriate file of expected results, produce the .sum file.

envsuite
Refer to the envsuite script for detailed documentation of the environment variables to be defined for host
and target compilers.

The TESTING Component
To this point, this user manual has described the conformance-test components of CV-Suite, which are used by
various parties to determine conformance to the ANSI/ISO C standard. But CV-Suite also provides several
components which are used for QA testing of C compilers, over and above the conformance requirements. These
components are described below.

The BENCH benchmark tests
In the bench directory are source code for several small benchmark tests. The “destination” directories (dst-
win, dst-ix) contain a bench directory. Each contains a makefile that will build the bench executable
program, then execute that program to produce a bench.out output file.

The tests produce one line of output (at the end of many lines of trace information). If you combine each line of
output into a table, you get a table like this one (bench-2001.tbl):
Example outputs circa 2001
Times are in nanoseconds

 register auto auto function auto
 int short long call+ret double
 800mhz-pc 3.09 9.56 7.79 13.1 10.6
 b55-presario-1600 6.85 8.32 7.89 12.6 23.0
 b55-vaio-pcg-f540k 6.92 7.78 6.85 12.6 16.9
 gcc2.96-1.2ghz-pc 3.9 3.49 3.24 6.75 3.85
 msvc7-dell-inspir8000 4.77 4.86 4.74 6.26 3.46

More details about the benchmarks are provided as an appendix at the end of this user manual. Note that the older
benchmark timings (1980’s and early 1990’s) are given in microseconds, not nanoseconds.

The OPTIONAL negative-tests
In the optional directory, there is a directory containing several negative-tests (tests for production of diagnostic
messages). All of these tests invoke “undefined behavior”, so a high-quality compiler should at least produce some
form of “warning” message, but the C standard does not impose any requirements. The structure, and the harness,
are the same as the negtests directory, as described above.

EXIN
EXIN is the Executive INterpreter. It is a script processing language, and is used for many of the more advanced
tests in the Suite. The language processed by EXIN is inspired by sh and csh from the UNIX operating system.

The EXIN Command Line
The EXIN interpreter takes the following command line:

exin [-D] [-R] <filename> [<arguments>]

EXIN takes its input from the script filename specified on the command line, and processes one line of input at a
time. The syntax is similar to the C language. There is one data type, a text string, but that can be evaluated
numerically by built-in operators.
There is high level control flow (including for loops, while loops, if blocks and switches). Other programs
can be executed (such as the compiler under test). EXIN can write text to files, and is commonly used to generate C
programs.
The optional -D parameter specifies "debug" trace output. If this flag is specified, EXIN will leave an execution
trace in a file named exindebug. This same trace behavior can be obtained by defining an external environment
variable EXINDEBUG, which will cause debug output from every execution of EXIN (including nested invocations).

The optional -R parameter is a number that can be used to re-seed the random number generator.

Running EXIN
Once a compiler has passed the CONFORM section of the Suite, it can be assumed that compiler handles all of the
syntax and semantics of the C language. The next step is to build EXIN and have it pass its own test suite.

EXIN is an extremely portable program. It can be compiled by a K&R, System V, V7, or ANSI implementation.
However, if the implementation lacks a "spawn" capability (invoke a command and return its status code to the
caller), it can only be used as a "generator" of output files. If a "spawn" capability is available (via the system
function, or equivalent), EXIN can be used as a full command interpreter, to create test files, compile, link, and
execute them. This extra capability is well worth the effort of configuring EXIN for "spawn" capability.

Before describing the syntax of EXIN scripts, we will describe how a script is executed:

1. The file is read into memory.
2. Data structures are created that describe all of the control structures; loops, switches, if statements

are noted and information on their entries and exits is noted.
3. Each line is executed in order unless there is an explicit control flow construct.
4. As each line is executed, it goes through the following:
5. discard any text following # (i.e., a comment);

6. expand all variable (macro) references in the line;
7. do any I/O redirection;
8. parse the command;
9. if the line is an EXIN command, do the appropriate command;

10. otherwise attempt to pass it to the operating system.

EXIN Keywords
The EXIN interpreter uses the following list of keywords:

and secondary control list for for loops

break unconditional transfer out of a loop

by numerical increment in a for loop

case a value to be matched in a switch

continu
e

skip to the next iteration of a loop

default if no cases in a switch match

echo write rest of line to STDOUT

echoerr write rest of line to STDERR

else alternate control for if statement

end marks end of all control structures

exit terminate the script

for iteration control

goto unconditional control transfer to a label

if conditional execution

in keyword used in one variety of for
loop

set set the value of a local variable

setenv set a global (environment) variable

EXIN has control structures for while loops, switch statements, if-else statements, and both numerical and
list directed for loops. All control structures terminate with the end statement, and can be nested to arbitrary depth.

FOR Loops
There are two forms and one variant of for loop structures. String loops iterate over items in a list. Each time
through the loop the control variable is set to the next item of the list, until the list is exhausted:

for <name> in <list>
...
end

Numeric loops iterate over a numerical range. The control variable is incremented or decremented each time through
the loop until the end value is reached:

for <index> = <start> to <end> [by <incr>]
...
end

The default value of incr is 1, and loops always execute at least once.

The and keyword allows loops to have multiple parallel control variables:
for <name> in <name_list>
and <index> in <element_list>
and <index> = <lwb> to <upb> [by <incr>]
...
end

An and list or range must contain the same number of elements as its companion for, and all and statements must
be on lines immediately following for statements. The ands terminate at the end of their companion for and do not
require separate ends.

Textual and numerical loops may be intermixed in for / and groups, but the number of control variables must all
come out even at loop termination.
WHILE Loops
The while loop iterates as long as test is true, i.e., as long as $eval(<expression>) is non-zero:

while <test>
...
end

BREAK and CONTINUE Statements
The continue statement transfers control to the end statement of nearest enclosing for or while loop, for its
next iteration.

shift move command line arguments

source execute a script in the current context

switch control transfer selection

to keyword used in one variety of for
loop

unset remove a local variable definition

unseten
v

remove a global variable definition

while loop control

The break statement transfers control to the first line beyond the end of the nearest enclosing for, while or
switch structure.

GOTO Statements
The goto statement transfers control to the first line after a label:

goto <label>

Transfers into block structures are not allowed but transfer out of a block structure is. A label is established with a
colon as

:label

IF Statements
The if statement executes the body of the clause if the expression evaluates to a non-zero integer. The else clause
is optional. The expression is always evaluated as if it were written:

if ($eval (<expression>))
...
[else
...]
end

SWITCH Statements
The switch statement tries to match the word to the arguments of the associated case statements, just like in C.
Similarly, there is a default statement. If there is not a break at the end of the case, control flow will fall
through to the next case.

switch <word>
	 case <pattern>
...
	 case <pattern>
...
	 break
	 default
...
end

The matching is a textual match, and certain wild card characters are allowed in the case arguments. A pattern is
composed of a word or set of meta-characters:

*	 matches any 0 or more characters
?	 matches any single character
[...]	 matches any character in sets ([a c d]) and/or
ranges ([A-L]) inside brackets

EXIT Statements
There are two forms of exit: with and without a numerical argument. If an argument is present, it is returned to the
calling process. If not, a 0 is returned. If a file is being sourced, one file level is popped. Otherwise the current shell
is exited. The error variable is set appropriately whether exit is from a source or the shell.

Variables
In addition to keywords, the EXIN language uses variables. All text that is not used as a keyword is treated as
simply text, unless it is prefixed with the symbol $. This declares that a variable is being used, and variable name is
to be substituted into the text.
For example if the variable THIS is currently defined to be "this is it", then the line

echo $THIS THIS $THIS---

becomes
echo this is it THIS this is it---

Access to Command Line Arguments
EXIN supports named variables (described below), and variables defined on the command line.

$0 	 	 	 substitute name of current file
$n 	 	 	 substitute nth command line argument
$# 	 	 	 substitute the number of remaining arguments
$* 	 	 	 substitute the entire argument list
shift 	 	 	 rename $n etc. to be $n-1 etc.
shift 3 	 	 equivalent to shift; shift; shift

Local and Global Variables
The only data type in an EXIN script is a string of text. Variables may be created whose value is the currently
assigned string. Whatever the size of a string, it is treated lexically as one "word". There are two kinds of variables:

set variables 	 	 local, limited to the lifetime of their shell
setenv variables 	 global, and inherited by any sub-shell

The syntax of the set command is as follows:

set <name> = <word> defines <name> to be <word> string
set <name> 	 	 displays current definition
unset <name> 	 removes definition

Similarly for setenv and unsetenv.

Referencing Variables
When the $ character is seen, EXIN tries to make the longest possible match of a local or global variable. For
example, if both ABC and ABCD are defined, $ABCD will be replaced with the current value of ABCD. If a name is
defined both locally and globally, the local definition will be used.

$<name> 		 substitute contents of <name>
$$<name> 	 	 substitute for <name>, then rescan

If no definition for a name such as $ABCD is found, EXIN inquires from the external environment whether the name
is defined there. That is, EXIN asks whether getenv("ABCD") finds a definition, and if so, EXIN copies that
definition into its internal name table.
Referencing Inside Strings
It is possible to get the component parts of a variable using a C-like array syntax. Although each variable is treated
as a single "word" during substitution, the individual component "words" are subscripted 1...n (unlike C language
arrays, which are subscripted 0...n-1).

$<name>[n n ...] 	 nth components
$<name>[n-n] 	 components in specified range
$<name># 	 	 number of components

For example,
set A = "one two three four"
echo $A[2 1] -- $A[3-4] -- $A#

produces
two one -- three four -- 4

Note: any of these indexes can be the result of an expanded expression. Thus,
echo $A[$A#]

produces four Built-in Variables
In addition to user-defined variables, there are some that are built-in to EXIN:

$error 	 	 contains return value of a sub-process
$rand 	 	 generates a signed integer random number
$defined(var) 	produces 1 or 0 depending on whether

the string is the name of a variable
Expansion of Quotes and Escapes
Double quotes ("): All text enclosed between an open-quote and a close-quote is one logical word. Any variables in
the string are expanded.
Single quotes (’): All text enclosed between an open-quote and a close-quote is one logical word. Variables are not
substituted.
The single quotes can be used for dynamic binding:

set A = ’$x’ # line 1
set B = "$y" # line 2
...
echo $B $$A # line N

The expansion of $B contains whatever the value of $y was at line 2.

$$A, however, is expanded with whatever the value of $x was at line N.

Escapes (\): Escapes can be used to continue a logical line across a physical new line or to nullify or postpone the
effects of special characters.

Expression Evaluation
The $eval operator expands all variables in its argument, then evaluates the string as an arithmetic expression. All
of the operators of C are available with their natural precedence. Parentheses may be used to override the natural
precedence. The numerical result is equivalent to 32 bit integer arithmetic evaluation of constant expressions in C.
Example:
	 $eval($a + 1) increments $a

All arithmetic operators of C language are recognized, as well as string comparisons and exponentiation:

Input and Output Redirection
EXIN supports certain redirection facilities:

< 		 	 standard in
> 		 	 standard out
>& 	 	 	 standard out and standard error
>o& 	 	 	 standard out

! ~ - Unary

** Exponentiation

/ % Multiplicative

+ - Additive

<< >> Shift

< <= >
>=

Relational

!= == comparison (for strings, too)

& ^ | Bitwise

&& || Logical

>e& 	 	 	 standard error
>oe& 	 	 	 (also eo)

Examples:
cmd1 <file1 >file2

takes stdin from file1, and sends stdout to file2

cmd2 >oe&file3 send both stdin and stderr to file3

In addition, the >> symbol in place of > in the table will append the output to the named file.

Writing Output
The echo command writes the rest of the line to standard out:

echo This is what gets printed.

The echoerr command writes the rest of the line to standard error.

echoerr This gets printed. >& errfile

In this example, the string "This gets printed." has been redirected to the file errfile.

Executing Sub-Scripts
The source command allows other scripts to be executed in the current context. Such scripts have all of the local
variables visible, and any definitions made in the sub-script will be visible to the parent. After source
newscript.ex is executed, control goes to the next line beyond the source statement.

Sub-Programs
If a command is not recognized by EXIN, it is treated as an external sub-program. EXIN will attempt to "spawn" the
sub-program and retrieve its return code (unless configured for "generate only").

Configuring EXIN with machdep.c
EXIN contains some machine and operating system dependencies that must be dealt with in order to build it. These
dependencies have been isolated into the file machdep.c. For most UNIX-like systems, defining the preprocessor
variable fooNIX will include the proper parts.

For Berkeley UNIX, the preprocessor symbol BSD should be defined.

For MS-DOS systems, the symbol MSDOS should work.

Unfortunately, this section of EXIN cannot be written in "portable" C. There are several reasons:
1. Spawning sub-processes: EXIN requires the ability to "spawn" a sub-process. Although the system

routine is a "portable" way to do this, some versions of that routine do not return an error code
from the child process. Using spawn (MS-DOS) or fork/exec (UNIX, POSIX) allows access
to this return code (to set the $error variable). If your system is not supported already, we will
help you in the porting process.

2. Re-directing input/output: The open, seek and dup calls are not supported in the ANSI
Standard. It is not possible to redirect the I/O of a spawned sub-process without them. The
exin.h file defines a symbol NO_LEVEL_0. If set to non-zero, only level 1 (fopen etc.) I/O
will be performed. This allows all output from EXIN scripts to be redirected, but will not redirect
the output of a sub-program. Again, if your system is not supported, we will help you through the
port. See the discussion of the GENERATE option in the LIMITS, COVER, and STRESS sections
of this reference.

There is a makefile for building EXIN. As with the other sections of the Suite, executing the command

make all

will create the EXIN executable, plus a small test.

Configuring EXIN: config.ex

EXIN is mostly used for controlling the building, compiling, linking, and executing of test programs.

The recipes that it follows for these operations are specified as options in the file config.ex, in the following
strings:

The GENERATE Option
By default, the scripts in the COVER directory will generate, compile, link, and execute the test files. By setting the
configuration variable GENERATE to be YES, the test files will be generated, but not compiled, linked, or executed.
This is useful when you want to generate the files on one system and execute them on another. The standard scripts
in the COVER section will generate almost 300 Megabytes of test files.

Testing EXIN
There are several EXIN scripts available for testing. Tests of the behavior of EXIN itself are obtained by executing

exin testall.ex

(Executing make all will perform this test also.) The results are self-explanatory: a test is run which produces
output to the console. This is followed by the expected results.
Tests that exercise EXIN’s ability to create, compile, link, and execute test programs are obtained by executing

exin comptest.ex

This test makes use of the config.ex file that was discussed earlier under Configuration. If any of the strings in
config.ex were incorrectly configured, the error would be revealed as an error during the execution of exin
comptest.ex.

COMPILE command(s) for compiling the source file

COMPILE_OK command for checking that the compilation succeeded

LINK command(s) for linking the objects

CLEANUP command(s) for deleting the source and objects; if
DO_CLEANUP is set to NO then this is unnecessary

LOGFILE file name in which to log results

GENERATE NO if the files are to be generated compiled linked and
executed

DO_CLEANUP set to YES or NO to determine whether the generated
files get cleaned up each time.

IF_ANSI set to YES or NO depending on whether your compiler
supports ANSI C (long double etc.).

OBJ file extension for object files

EXE file extension for executable files

EGEN
EGEN is the Expression GENerator. Since it is impossible to test all possible C language expressions, the Suite
provides this tool for generating complex expressions, and code to check that the right answer is calculated.

The EGEN Command Line
EGEN is invoked with the following command syntax:

egen -D<data_set> [<flags>...] [<template<]

The option flags are:

There are no default typing rules; use either -V -A or -U -K .

The EGEN data_set is a text file which describes the variables to be used in generating the expressions. Several
data sets are provided with the STRESS section, and others can be created as needed.

The template is a list of operators or special tokens that specify the kind of expression to be generated. Each
token has an equivalent alphabetic name which can be used in its place (to avoid the need for quotes, backslashes,
etc., in script files or makefiles).

Here are the EGEN operators and special token symbols:

R<number> random number seed

S<name> subroutine name

N<number> number of statements to generate

I<name> file name to read input from

O<name> file to write output to

C emit check code at each statement (default)

X suppress checking code until end of subroutine

V use value-preserving (instead of unsigned-preserving)
typing rules

U use unsigned-preserving (instead of value-preserving)
rules

A use ANSI typing rules: shift takes type of left-hand-
side

K use K&R typing rules: shift follows usual arithmetic
rules

P generate only strictly-portable programs

! not ~ compl Unary

* times / div % rem Multiplicative

+ plus - minus Additive

<< lsh >> rsh Shift

< lt > gt <= le >= ge Relational

== eq != ne Comparison

The expression templates can contain all C language unary or binary operators, as well as the special operators @@ ,
() , and {} .

Ordinarily, each generated statement will be followed by code to check that the expression produces the correct
answer, and that all side effects have taken place correctly. If the -X flag is specified on the command line, no
checking code is emitted until the end of the module. This is useful for many compilers that lose common sub-
expressions at function boundaries. More complete control of the statement and check process is available using the
I input file option.

Running EGEN
After passing the previous sections of the Suite, a compiler should be trustworthy in calculating the results of simple
expressions. EGEN relies on this to generate self-checking expressions of arbitrary complexity. Each complex
expression has its value calculated from the simpler components that make it up.
For example, a compiler generating code for the statement

(a*b) + (c*d)

might have an error in keeping track of multiple registers and get the wrong answer. But calculated as
temp1 = a*b
temp2 = c*d
temp1+temp2

the right answer is more likely, given that expressions of this complexity have been exhaustively tested in the
COVER section. This is the main idea of EGEN. By decomposing a complex expression into simpler pieces, EGEN

& band | bor ^ xor Bitwise

&& andif || orelse Logical

- neg unary minus

pre++ preinc pre-increment

pre-- predec pre-decrement

post++ postinc post-increment

post-- postdec post-decrement

*= timeseq /= diveq assignment operators

%= remeq " "

+= pluseq -= minuseq " "

<<= lsheq >>= rsheq " "

&= andeq |= oreq " "

^= xoreq " "

= assign Assignment

(lparen) rparen parenthesis for grouping

@ at EGEN randomly selects an operator

{list} EGEN randomly selects an operator from
the list

lbrace list rbrace EGEN randomly selects an operator from
the list

expects to get the "right" answer and use that to check the compiler’s result on the full complex expression. In
addition to the self-checking expression, EGEN puts comments into the generated source file that show the values of
the simpler intermediate calculations.
An example of an EGEN command line is

egen -R23 -Dinteger.gen -N10 "(+)" "*" "(-)"

This sets the random number seed to 23, uses the data set defined in the file integer.gen, and generates 10 self-
checking statements of the form

(variable + variable) * (variable - variable)

EGEN randomly assigns variables from the data set to each variable, and tracks what the final value should be.
Given the command line

egen -Dinteger.gen -10 "{" "+=" "-=" "*=" "}" @

or the equivalent form with alphabetic names,
egen -Dinteger.gen -10 lbrace pluseq minuseq timeseq rbrace at

EGEN would generate 10 statements of the form
variable <OP1> variable <OP2> variable

where each variable is randomly chosen from the data set integer, OP1 is randomly chosen from the set {+=-=
and OP2 is randomly chosen as any C operator. EGEN generates code for the expression, code to check the result of
the expression, and code to check the results of any side-effects.

Defining an EGEN Data Set
The data set specified on the EGEN command line must contain a set of descriptions of C language variables. The
format is identical to C variable declarations, but with a few limitations. The syntax supports all scalar types and any
level of indirection. Floating-point initializers must have digits preceding the (optional) decimal point. All variables
must be initialized, and naturally there are declaration order dependencies for pointers and the variables they are
initialized to point to. Variables with storage class static can be initialized to point to local variables (which is neither
legal nor meaningful in a C program). This latitude is available because all initialization code will be generated by
run-time assignments.
For example:

auto int i = 3;
static int *pi = &i;

Here is a real example. This command line is
egen -Dinteger.gen -N4 "{" += -= "}" "{" neg ~ "}" "(" @ ")"

and the output is as follows:
main()
{
extern char *Filename;
int true = 1, false = 0;
auto unsigned int ui;
static unsigned int *pui;
auto int i;
static int *pi;
auto short s;
static short *ps;
auto char c;
static char *pc;
auto unsigned long ul;
static unsigned long *pul;
auto long l;
static long *pl;
register int rint1;
register int rint2;
ui = 3;
pui = &ui;
i = 10;
pi = &i;
s = 13;
ps = &s;

c = 20;
pc = &c;
ul = 65000;
pul = &ul;
l = 130000;
pl = &l;
rint1 = 1;
rint2 = 2;
Filename = "main";
iequals(__LINE__, rint2 -= - (*pui < c), 3);
iequals(__LINE__, rint2, 3);
iequals(__LINE__, *pi += - (s >>= ui), 9);
iequals(__LINE__, *pi, 9);
iequals(__LINE__, s, 1);
iequals(__LINE__, rint1 += ~ (true ? *pc : *ps), -20); iequals(__LINE__, rint1, -20);
lequals(__LINE__, *pl -= - (*pc /= *pui), 130006L);
lequals(__LINE__, *pl, 130006L);
iequals(__LINE__, *pc, 6);
report(__FILE__);
}

EGEN Input Files
If the -I<filename> option is indicated on the EGEN command line, then the generation process can be
controlled from an input script. The contents of the file are copied directly to the EGEN output unless one of the
EGEN keywords is seen:

Here is an example of an input file:
@header

int my_var;
int my_array[10];
@init

/* move out loop invariants */
for (my_var = 0; my_var < 10; ++my_var)
 {
 my_array[my_var] = @statement "-X -N4 = { + - * / }";
 }
@check;

/* create a few common sub expressions */

@header 	 Generate the header code. This includes the
subroutine entry point and the data declarations.

@init	 Generate the initialization code.

@statement 	 Generate the statement. However many
statements have been specified with the
-N<number> switch will be generated here. If
the -X switch is active, no checking code will
be generated. This directive also takes an
optional argument, a string, which can contain
the same switches the command line accepts,
with the exception of -D, -S, -O and -I. See
the example below.

@reset	 This resets the internal variables in EGEN so that
an identical sequence can be generated. This is
useful for creating instances of common sub-
expressions.

@check	 If the -X flag is active, the checking code is
generated.

@reset
@statement "-X -N4 = { + - * / }";
@reset
@statement "-X -N4 = { + - * / }";
@check

This example creates statements that are invariant with respect to the user-defined loop control variable. Then it
creates two instances of the same four statements, which should produce common sub-expressions.
Statements that are not invariant with respect to user-defined loop control variables will not be handled properly by
the current version of EGEN. (Please contact Plum Hall if you have suggestions for enhancement of EGEN in this
area.)

EGEN64
EGEN64 is an enhanced version of the Expression GENerator. This version of EGEN is built with a compiler that
supports 64 bit integers, and will allow the generation of C language expressions that include 64 bit integers. The
type name of the 64 bit integer supported by the compiler used to build EGEN64 need not be the same as the name
used by a compiler under test.
There are two predefined makefiles for building EGEN64 one under the dst-win directory for use in a 32 bit
Windows™ environment and configured for the Microsoft 4.0 compiler, the other under the dst-ix directory for
use in a UNIX™ environment configured for gcc. To build in either of these environments requires some
configuration, as the default configuration is to build a standard EGEN without the 64 bit integer support.

Configuration of EGEN for 64 Bit Integer Support
If you wish to build EGEN with 64 bit support then the flags.h file in your destination directory
needs this definition:
#define PH_INT64 1

Testing 64 BIT Integer Expression
Once EGEN has been built successfully if it is run with no option you should get the following output:

syntax: egen Version 2016a <switches> <opcodes>
 Compiled Jan 6 2016
 Configured with 64 bit integer support
 -D<database> (required) name of data base file
 -U (-U or -V required) use unsign preserving typing rules
 -V (-V or -U required) use value preserving typing rules
 -A (-A or -K required) use ANSI typing rules for shift
 -K (-K or -A required) use K&R typing rules for shift
 -R<number> (optional) random number seed
 -S<name> (optional) subroutine name
 -N<number> (optional) number of statements
 -O<name> (optional) output file name
 -I<name> (optional) input file name
 -X (optional) emit checking code at end
 -C (optional) emit checking code after each statement
 -P (optional) generate portable expressions

Note specifically the line indicating that 64 bit integer support has been enabled.

Using EGEN 64
This version of EGEN will now accept the keyword int64_t . For example, given the file int64.gen which
contains the following:

auto unsigned int64_t uxl = 70000;
static unsigned int64_t * puxl = &uxl;
auto unsigned int64_t ** ppuxl = &puxl;

auto int64_t xl = 97;
static int64_t * pxl = &xl;
auto int64_t ** ppxl = &pxl;

register int64_t rint1 = 1;
register int64_t rint2 = 2;
register int64_t rint3 = 3;
register int64_t rint4 = 4;
register int64_t rint5 = 5;

The operation
egen $(EGENFLAG) -R23 -D$(SD)int64.gen -N10 "(+)" "*" "(-)" >test4.c

will generate a file as follows:

/**
 ** Self-checking C source code generated by EGEN component of **
 ** The Plum Hall Validation Suite for C. **
 ** (C) 1986-1997 Plum Hall Inc **
 ** EGEN Version 8.00 **
 ** This version supports 64 bit integers configured by **
 ** inttypes.h **
 ** EGEN -A -V -P -R23 -Df:\suite\testing\egen\int64.gen **
 ** -N10 (+) * (-) **
 ***/

#include "defs.h"
#include "int64.h"

int main()
 {
	 extern char *Filename;
 auto unsigned INT64 uxl;
 static unsigned INT64 * puxl;
 auto unsigned INT64 ** ppuxl;
 auto INT64 xl;
 static INT64 * pxl;
 auto INT64 ** ppxl;
 register INT64 rint1;
 register INT64 rint2;
 register INT64 rint3;
 register INT64 rint4;
 register INT64 rint5;

	 /* ... rest of source file ... */

The generated files will contain the macro INT64 as the name of your 64 bit integer type which you will need to
define in your int64.h or inttypes.h header file.

STRESS
The STRESS section is a collection of EXIN scripts and data sets for EGEN.

The stress.ex script is intended to be run in the background on a multi-tasking operating system (or during
programmer sleep-time, on a single-user system).
Each time it is started, it will execute repetitively; the number of iterations is specified by the variable
$ITERATIONS. Periodically the output can be checked to see if any compiler errors have been detected. The
allops.ex script will cycle through all of the C operators in conjunction with a second operator named on the
command line. These two scripts are intended as examples of the kinds of tests that can be run using EGEN.

There are 3 data sets provided with the STRESS section:

integer.gen 	 all integer data
real.gen 	 	 all floating point data
mixed.gen 	 	 a mixture of real and floating data

New scripts can be adapted as necessary. If, for example, a compiler is having trouble with embedded assignment
statements, a script can be run in the background with a statement like

egen -Dinteger.gen -N10 -R$STRESS @ "(" "{" += -= /= %= "}" ")" @

where the $STRESS variable is changed every time in a loop.

The stress.ex script can be modified for a different number of iterations; change the initializer of
$ITERATIONS (around line 38).

COVER
Once the EXIN interpreter is built, it can be used to run the scripts in the COVER section. These scripts generate
exhaustive coverage of simple expressions in the C language.
At the core of the COVER section is an EXIN script which, given two data sets and a C language operator, generates
all possible permutations. All C operators (unary, binary, and ternary) can be covered with this script.

Command Line
The command line used to run this script is

exin <script> [-RESTART[<def>...]] [<def>...] [-A] [-X <extension1>
<extension2>]

where <def> is

<operator> | <data_set> [-S]

The script argument defines the name of the script file.

The -RESTART option (and its required arguments) allow these scripts to be restarted from within their pattern of
test files.
The def arguments represent required combinations of operator and data set as defined by the script file. In general,
you will never have more than two data sets and one operator in any one command line (including the arguments to
the -RESTART option.)

The –X command line argument is described after the explanation of how cover works.
data_set represent required data set arguments, and is the name of one of the data sets from the table below. The
optional argument -S tells the script to declare the variables from that data set as static rather than auto (the
default).
operator represents an operator name. This is one of the C language operators from the table in the Cover
Operators section below.
The final argument, -A, is also optional. If present, the output of the test is appended to a log file. The default is to
create a new file.
Data Sets and Operators

There are two key terms fundamental to understanding the operation of the COVER scripts; "Data Sets" and
"Operators".
A Data Set is a collection of data declarations and initializations used in the generation of a self-checking C
program. The scalar data set, for example, contains declarations for:

char, unsigned char, signed char
short, unsigned short
int, unsigned int
long, unsigned long
float, double, long double

Other sets can be added as needed, but the current list of Data Sets is:
scalar 	 	 scalar data types
pscalar1 	 pointers to scalar data types
pscalar2 	 pointers to pointers to scalar data types
union 	 	 unions of scalar types
punion 	 	 pointers to unions of scalar types
struct 	 	 structure members
pstruct1 	 pointers to structure members
pstruct2 	 pointers to structures with pointers to structures
array1 	 	 one dimensional arrays of scalar types
array2 	 	 two dimensional arrays of scalar types
bits 	 	 bitfields
pbits 	 	 pointers to bitfields
func 	 	 function returning scalar types
funcrp 	 	 function returning pointer to scalar type
funcrs 	 	 function returning structure of scalar types
arrarr 	 	 array of scalars indexed by array of int

Cover Operators
Operators are the C language operators. Each of these operators is known by its name, such as plus. The cover
script operators are:

plus binary + not unary !

minus binary - compl unary ~

times binary * preinc unary ++X

div binary / predec unary --X

rem binary % postinc unary X++

Lt binary < postdec unary X--

Gt binary > quest ternary ? :

Le binary <= pluseq binary +=

Ge binary >= minuseq binary -=

eq binary == timeseq binary *=

ne binary != diveq binary /=

andif binary && remeq binary %=

orelse binary || bandeq binary &=

band binary & oreq binary |=

Each program generated by the COVER scripts reports errors in this form:

auto scalar auto scalar plus at line 234: (12) != (13)

Each program also prints a summary of the form:
***** 999 successful tests in auto scalar auto scalar plus *****
***** 2 errors found in auto scalar auto scalar plus *****
***** 0 skipped sections in auto scalar auto scalar plus *****

COVER Scripts
The COVER section contains scripts which allow the generation of C programs which check all possible
permutations of the following:

cover.ex 	 2 data sets with any operator
alldata.ex 	 all data sets for one operator
allops.ex 	 2 data sets with all operators
all.ex 	 all data sets for all operators
sample.ex 	 a sampling of all data sets and operators

The syntax of each is:
exin cover.ex [-X <extension1> <extension2>] <d1> [-S] <d2> [-S] <op> [-A]
exin allops.ex [-RESTART <op>] [-X <extension1> <extension2>] <d1> <d2>
exin alldata.ex [-RESTART <d1> <d2>] [-X <extension1> <extension2>] <op>
exin all.ex [-RESTART <d1> <d2> <op>][-X <extension1> <extension2>]
exin sample.ex [-RESTART <d1> <op>]

Here is an example of the kind of program generated by the COVER scripts. The data sets were chosen as scalar vs.
scalar, and the operator is plus (binary +).

#include "types.h"
int main()
{
extern char *Filename;
auto CHAR Ac = 7;
#if ANSI
auto SCHAR Asc = 8;
#endif
auto SHORT As = 9;
auto INT Ai = 10;
auto UCHAR Auc = 11;
auto USHORT Aus = 12;
auto UINT Aui = 13;
auto LONG Al = 14;
auto ULONG Aul = 16;
auto FLOAT Af = 16;
auto DOUBLE Ad = 17;
#if ANSI
auto LDOUBLE Ald = 18;
#endif
 /* a second distinct data set would go here */

or binary | xoreq binary ^=

xor binary ^ lsheq binary <<=

lsh binary << rsheq binary >>=

rsh binary >> cast unary
(TYPE)

uminus unary - assign binary =

Filename = " auto scalar auto scalar plus ";
iequals(__LINE__, Ac + Ac, 14);
iequals(__LINE__, Ac + Ac, 14);
#if ANSI
iequals(__LINE__, Ac + Asc, 15);
iequals(__LINE__, Asc + Ac, 15);
#endif
iequals(__LINE__, Ac + As, 16);
iequals(__LINE__, As + Ac, 16);
iequals(__LINE__, Ac + Ai, 17);
iequals(__LINE__, Ai + Ac, 17);
iequals(__LINE__, Ac + Auc, 18);
iequals(__LINE__, Auc + Ac, 18);
iequals(__LINE__, Ac + Aus, 19);
iequals(__LINE__, Aus + Ac, 19);
iequals(__LINE__, Ac + Aui, 20);
iequals(__LINE__, Aui + Ac, 20);
lequals(__LINE__, Ac + Al, 21L);
lequals(__LINE__, Al + Ac, 21L);
lequals(__LINE__, Ac + Aul, 22L);
lequals(__LINE__, Aul + Ac, 22L);
dequals(__LINE__, Ac + Af, 23.);
dequals(__LINE__, Af + Ac, 23.);
}

Non-Standard keywords (near, far)
The “–X” command line argument allow insertion of non-standard declaration modifiers, in particular “near” and
“far”. The cover.ex script generates all possible combinations of an operator and the 2 named data sets. If –X is
included the first data set will be modified according to the first extension, and so on for the second. For example,

exin cover.ex –X near far scalar pscalar
will generate statements of the form:
	 int near Ai = 1;
	 int far Bi = 2;
	 int far * pBi = & Bi;
…

iequals(__LINE__, *pBi + Ai, 3);
Either of the –X arguments can be set to “” (nothing). Alternately, the –X construct is optional and can be left off.
The same syntax and rules apply to the higher level scripts allops.ex and all.ex.

Configuring COVER
The cover.ex script reads a set of definitions from a file named config.ex for configuring the COVER section.
The makefile for COVER copies the exin/config.ex configuration file into the COVER directory. (This
simplifies the location of script files.) The configuration of config.ex that was done in the EXIN directory
should not need any changes in COVER.

The GENERATE Option
By setting the configuration variable GENERATE to be YES, the test files will be generated, but not compiled,
linked, or executed. (This was discussed earlier in the EXIN chapter.)

A Note on Naming
The files generated by COVER have rather cryptic names. This was necessary in order to guarantee unique names for
all files under the GENERATE option, and still create names that are legal filenames on systems with name length
limitations. The first two letters of the name are an encoding of the operator, the next letter encodes the first data set,
followed by s (static) or a (auto), followed by an encoding of the second data set, and another s or a.

For example, the command line

exin cover.ex scalar pscalar1 -S plus

generates a file named plaabs.c (i.e., "plus, #1 data set, auto, #2 data set, static").

The operator mapping is done in the script shname.ex, and the data name mapping is done in the script
dnumbers.ex.

The utility program recvx (built in the EXIN directory) reverses the mapping, so executing

recovx plaabs

produces this output line:
exin cover.ex scalar pscalar1 -S plus

If “char” is unsigned	

In the cover directory the file config.ex contains the default line:
 set UCHAR = N
This generates test code that treats “char” as a signed variable type. However, if this line is, instead, set to
 set UCHAR = Y
the generated code will treat “char” as an “unsigned char”.

LIMITS
The purpose of the LIMITS section of the Suite is to determine the value of certain compile time limits.

The ANSI/ISO Standard specifies a set of "minimum maximums" that a conforming implementation must meet.
(See Section 5.2.4.1 of the Standard.) This section contains a set of scripts that determine the actual value of these
limits (beyond the minimum requirement).

Running LIMITS
The EXIN script limits.ex calculates the actual limits for each of the required parameters. The script is invoked
as

exin limits.ex <limit_name>

where limit_name is one of these Standard-required environment limits:

[Note: The minimums are not updated for C99 yet.] The all.ex script probes all of the ANSI limits. It is invoked
as

exin all.ex

(Again, make all will accomplish the same thing.)

Note: The syntax generated into nparms.c may require a full standard compiler to handle the lines spliced with \.
If your compiler cannot handle arbitrary line-splicing, all.ex will report an absurdly low capacity for macro
parameters.

blknest control structure nesting (15)

condnest conditional compilation nesting (6)

declmod declarator modifiers (12)

dparens levels of declaration parenthesis nesting (31)

parens levels of parenthesis nesting (32)

iident characters of significance, internal identifier (31)

eident external identifier name length (6)

exid number of external identifiers in a file (511)

blockid number of identifiers in a single block (127)

macros number of macros simultaneously defined (1024)

fparms number of parameters to a function call (31)

mparms number of parameters in a macro (31)

line number of characters in a logical line (509)

string number of characters in a string (509)

object bytes in an object file (32767)

incnest include file nesting depth (8)

cases case labels in a switch (257)

members members in one structure or union (127)

enums enumeration constants in one enumeration (127)

stnest levels of structure nesting (15)

An Example Session with the Testing Section
The CONFORM section of the Plum Hall Validation Suite tests the compiler for conformance to the ANSI and ISO C
standards. Since conformance to the standard is not a complete judgment of correctness, the TESTING section
contains a few tools to help test for compiler quality.
At the heart of these tests are two programs: EXIN (EXecutive INterpreter) is a script language or "shell" similar the
UNIX shell, but provided in portable C source code. EGEN (Expression GENerator) is a tool for generating C
expressions and their expected results.
The directories of the TESTING section are:

Getting Started
The first step in using the TESTING section is to adapt two configuration files to the host system. In the root of the
destination tree (e.g., dst-ix on a UNIX system, or dst-win on an WIN32 system) is the file flags.h. This
header file is used when building EXIN to determine some of its characteristics.

Note: EXIN can be built with a completely empty flags.h and all of the scripts will work correctly. However, some
of the options allow EXIN to use extra features for more convenient testing.

Under ANSI/ISO C, the system function is used to execute external programs. The standard does not require the
exit code from the child program to be passed back to the caller. If you use the default (empty) flags.h, then child
program failures can only be detected if the system function indicates them. On most systems there are other (non-
ANSI/ISO) ways of invoking child programs that give good status indications. If your compiler is a UNIX or UNIX
variant system, then be sure that flags.h contains

#define fooNIX 1

If your system is an MSDOS based system (including WIN85 and WINNT), then use
#define MSDOS 1

These flags enable the reliable result reporting.
The second file to be configured is config.ex. This is used by the COVER and STRESS tests. The variables to be
configured are:
set GENERATE = NO

YES means generate test files, but do NOT compile, link, or execute

set IF_ANSI = YES
YES indicates that the compiler is ANSI/ISO Standard C.

set DO_CLEANUP = YES
YES says to delete the generated test files after executing them. Note: COVER can use over 300 Megabytes with
this set to NO.

set UCHAR = N
indicates whether the char type is unsigned. N means no, Y means yes.

EXIN the source code of the script language interpreter.

EGEN the source code of the expression generator

EGEN64 a destination only directory which allows building of a version of egen that supports 64
bit integers configured via the header file inttypes.h

LIMITS	 a set of EXIN scripts which test the compiler for adherence to ANSI/ISO standard
required performance limits.

COVER	 a set of EXIN scripts that generate, build, and execute an exhaustive set of tests of
operators and data types.

STRESS	 an EXIN script that works with EGEN to test random expressions of arbitrary
complexity.

Running the Testing Section
The simplest way to run the testing section is to execute the maketest shell script (on UNIX systems) or the
maketest.bat batch file on MSDOS. It will navigate all of the TESTING directories, "make" the programs, and
run the tests. If all of this runs successfully, look at the file testing.sum for the results.

There are sections of this user guide that explain each of the TESTING sections in depth. This section will take a
little tour of each directory and look at the generated output.
EXIN
After the EXIN interpreter is built, it is tested with a script that exercises its major features. The file testall.out
shows the results of these tests. Each couple of lines shows the output of the test and a remark about what should be
seen.
For example:

****** nested FOR/IF with GOTO ******
2 and 2
3 and 2
3 and 4

should see

2 and 2
3 and 2
3 and 4

The rest of the file contains similar tests and expected results.
The file comptest.ex exercises the commands in config.ex for compiling, linking, and executing a test
program. In its output comptest.out you should see

COMPTEST passed
***** 1 successful test in COMPTEST *****
***** 0 errors detected in COMPTEST *****
***** 0 skipped sections in COMPTEST *****

This indicates that the script executes correctly.
EGEN
If EGEN was built successfully, then the files test1.out, test2.out, and test3.out will show this:

--- compile test1 ---
--- link test1 ---
***** Reached first test *****
***** 10 successful test cases in .\test1.c *****
***** 0 errors detected in .\test1.c *****
***** 0 skipped sections in .\test1.c *****

This shows that EGEN successfully generated, compiled, linked, and executed the test program. (Note: if your
implementation produces 3-digit exponents like E+000, then the build test will show a few trivial diffs like “E+000”
versus “E+00”. If that’s the only difference, then your EGEN is built ok.)
LIMITS
The limits section tests whether the compiler handles all of the program size limits of the ANSI/ISO standard. The
file all.out indicates the results of this test.

Each of the tests has an indication of success or failure:
blknest :
**** MAXIMUM blknest is >= 128 (PASSED) ****
***** 1 successful test in blknest *****

or

blknest :
echo "**** MAXIMUM blknest is 12 (FAILED) ****"
echo "***** 1 error detected in blknest *****"

COVER
The COVER section tries to cover all operands and a rich set of data types by generating all of the possible
permutations. The results of the first test are stored in tryout.out:

cover: asoapa auto funcrs auto arrarr assign
command /c compiler asoapa ./
cover: asosps static funcrs static arrarr assign
command /c compiler asosps ./
***** Reached first test *****
***** 288 successful test cases in asoapa.c (auto funcrs auto arrarr assign) ***
***** 0 errors detected in asoapa.c (auto funcrs auto arrarr assign) *****
***** 0 skipped sections in asoapa.c (auto funcrs auto arrarr assign) *****
***** Reached first test *****
***** 288 successful test cases in asosps.c (static funcrs static arrarr assign)
***** 0 errors detected in asosps.c (static funcrs static arrarr assign) *****
***** 0 skipped sections in asosps.c (static funcrs static arrarr assign) *****

Now the COVER section is ready to run the major coverage test, all.ex. See the COVER description later in this
user guide for more information.
STRESS
The stress section uses the EGEN expression generator to generate random expressions of arbitrary complexity. The
output of the test is in logfile:

***** Reached first test *****
***** 10 successful test cases in ./int1.c *****
***** 0 errors detected in ./int1.c *****
***** 0 skipped sections in ./int1.c *****
...

The STRESS section of the User Guide explains how to configure the stress.ex script to generate different
patterns of expressions.

Appendix 1: “Simple Benchmarks for C Compilers”, May 1988.

[The following article appeared in "C Users Journal" May 1988.
 It describes the purpose and use of the enclosed benchmarks.
 Also see The20thAnniversary.pdf in the bench subdirectory.]

SIMPLE BENCHMARKS FOR C COMPILERS

by Thomas Plum

Dr.Plum is the author of several books on C, including Efficient C (co-
authored with Jim Brodie). He is Vice-Chair of the ANSI X3J11 Committee,
and Chairman of Plum Hall Inc, which offers introductory and advanced sem-
inars on C.

Copyright (c) 1988, Plum Hall Inc

We are placing into the public domain some simple benchmarks with several
appealing properties:

 They are short enough to type while browsing at trade shows.

 They are protected against overly-aggressive compiler optimizations.

 They reflect empirically-observed operator frequencies in C programs.

 They give a C programmer information directly relevant to programming.

In Efficient C, Jim Brodie and I described how useful it can be for a pro-
grammer to have a general idea of how many microseconds it takes to execute
the "average operator" on register int's, on auto short's, on auto
long's, and on double data, as well as the time for an integer multiply,
and the time to call-and-return from a function. These six numbers allow a
programmer to make very good first-order estimates of the CPU time that a
particular algorithm will take.

The following easily-typed benchmark programs determine these times
directly. The first one is benchreg.c ("benchmark for register opera-
tors"):

 - 1 -

 - 2 -

 1 /* benchreg - benchmark for register integers
 2 * Thomas Plum, Plum Hall Inc, 609-927-3770
 3 * If machine traps overflow, use an unsigned type
 4 * Let T be the execution time in milliseconds
 5 * Then average time per operator = T/major usec
 6 * (Because the inner loop has exactly 1000 operations)
 7 */
 8 #define STOR_CL register
 9 #define TYPE int
 10 #include <stdio.h>
 11 main(ac, av)
 12 int ac;
 13 char *av[];
 14 {
 15 STOR_CL TYPE a, b, c;
 16 long d, major, atol();
 17 static TYPE m[10] = {0};
 18
 19 major = atol(av[1]);
 20 printf("executing %ld iterations0, major);
 21 a = b = (av[1][0] - '0');
 22 for (d = 1; d <= major; ++d)
 23 {
 24 /* inner loop executes 1000 selected operations */
 25 for (c = 1; c <= 40; ++c)
 26 {
 27 a = a + b + c;
 28 b = a >> 1;
 29 a = b % 10;
 30 m[a] = a;
 31 b = m[a] - b - c;
 32 a = b == c;
 33 b = a | c;
 34 a = !b;
 35 b = a + c;
 36 a = b > c;
 37 }
 38 }
 39 printf("a=%d0, a);
 40 }

If you enter this and compile it to produce an executable program, you can
invoke it with one argument, the number of iterations for the major loop:

 benchreg 10000

If this execution takes 16 seconds, this means that the average register
operation takes 1.6 microseconds (16,000 milliseconds divided by 10,000
iterations of the major loop).

Let us examine the program in detail. Lines 8 and 9 define STOR_CL
("storage class") and TYPE to be register and int . Thus, on line 15,
three variables (a , b , and c) are declared to be of this storage class
and type. At line 16, the major loop control variables are long integers,
but they are touched only one one-thousandth as often as the inner loop

 - 3 -

variables, so they have little effect upon the timings. We are declaring
the atol function to return a long integer; it would otherwise default
to an int return. (If we were using a compiler based upon draft ANSI C,
we could #include <stdlib.h> to get the declaration of atol , but this
would limit the applicability of the benchmarks. This simple declaration is
all that even an ANSI compiler would need.)

At line 19, we set the major loop variable to the number given on the com-
mand line, and at line 20, we confirm it to the output.

Line 21 is crucial to preventing some overly aggressive optimizations. Ear-
lier versions of these benchmarks had simply initialized a and b to 1,
but this allows a compiler to forward-propagate a known constant value. The
expression av[1][0] gives the first digit-character of the command-line
argument; subtracting '0' produces a digit between 0 and 9. (Yes, the
latest ANSI draft now guarantees that the digit characters are a contiguous
sequence in any environment.)

Line 22 simply executes the major loop the number of times given by the
variable major . Line 25 repeats the inner loop 40 times, and with 25
operators in that loop, this produces 1000 operators. (Actually there are
1003, because of the initialization and the extra increment and test at loop
completion. The discrepancy is well within acceptable tolerances.)

Within the inner loop, 40% of the operators are assignments, in keeping with
the percentages reported in the original Drhystone work. Of the other
operators, the most frequent are plus and minus. The sequence of operations
is carefully chosen to ensure that a very aggressive optimizer cannot find
any useless code sections; each result depends functionally upon previous
results.

Finally, the printout at line 39 is also important to preventing over-
optimization. If the compiler could notice that we did nothing with the
computed result, it could discard all the operations that produced that
result.

We have completed our perusal of the first benchmark program, benchreg.c .
The second program (benchsho.c , for short's) is derived from benchreg.c
by changing lines 8 and 9: STOR_CL becomes auto , and TYPE becomes
short . The program is otherwise unchanged.

The third program (benchlng.c , for long's) is obtained by leaving
STOR_CL as auto and changing TYPE to long .

To make the fourth program (benchmul.c , for multiplies) we set TYPE to
int , and change lines 27 through 36 to one source line which does 25 multi-
plies:

 a = 3 *a; /* 25 * */

The fifth program (benchfn.c , for functions) is a major rewrite. We
arrange a series of function definitions for f3 , f2 , f1 , and f0 such
that each call to function f0 generates exactly 1000 function-call opera-
tions. In case the compiler has an aggressive optimizer, move the function
f3 to a separate source file, so that the compiler cannot see how useless

 - 4 -

it is. The global variable dummy will make the compiler think that f3
might be up to something useful. Here, then, is the benchfn.c function:

 1 /* benchfn - benchmark for function calls
 2 * Thomas Plum, Plum Hall Inc, 609-927-3770
 3 * Let T be the execution time in milliseconds
 4 * Then average time per operator = T/major usec
 5 * (Because the inner loop has exactly 1000 operations)
 6 */
 7 #include <stdio.h>
 8 int dummy = 0;
 9
 10 /* f3 - lowest level function
 11 * Put this in separate source file if compiler detects and
 12 * optimizes useless code
 13 */
 14 f3() { }
 15
 16 f2() { f3();f3();f3();f3();f3();f3();f3();f3();f3();f3();} /* 10 */
 17 f1() { f2();f2();f2();f2();f2();f2();f2();f2();f2();f2();} /* 10 */
 18 f0() { f1();f1();f1();f1();f1();f1();f1();f1();f1();} /* 9 */
 19
 20 main(ac, av)
 21 int ac;
 22 char *av[];
 23 {
 24 long d, major, atol();
 25
 26 major = atol(av[1]);
 27 printf("executing %ld iterations0, major);
 28 for (d = 1; d <= major; ++d)
 29 f0(); /* executes 1000 calls */
 30 printf("dummy=%d0, dummy);
 31 }

The sixth program (benchdblc. , for double's) is derived from benchlng.c
by changing STOR_CL to auto , TYPE to double , and replacing the inner
loop body with this slightly different version:

 a = a + b + c;
 b = a * 2;
 a = b / 10;
 a = -a;
 b = -a - b - c;
 a = b == c;
 b = a + c;
 a = !b;
 b = a + c;
 a = b > c;

These changes are necessary because floating-point operands are not allowed
for the shift, remainder, and bitwise operators, and because the subscript
operator does not really exercise the floating-point instructions. This
revised inner loop still gives us a representative mix of typical opera-
tions.

 - 5 -

This, then, completes our collection of six benchmark programs. After they
are compiled to produce executable programs, the next question is "How do I
time the execution?"

On UNIX systems, the timing is easy -- just run the time command:

 $ time benchreg 10000

The sum of the "user" and "system" times will give the CPU time used by the
program.

More accurately, we could time the execution of zero iterations, and sub-
tract that time from the time for the measured number of iterations.

On MS-DOS systems, timings can be obtained, but with greater difficulty. If
we create a file named CR-LF which contains just one newline (or
"carriage-return-newline" in DOS parlance), we could time our program with a
"batch" file such as this:

 time <cr-lf
 benchreg 0
 time <cr-lf
 benchreg 10000
 time <cr-lf

We must then take times that are expressed in minutes-and-seconds and pro-
duce differences expressed in seconds.

With whichever method, we eventually produce six numbers that are character-
istic of a particular environment (a specific compiler supporting a specific
machine).

[NOTE: Since this article appeared, I have added a driver program, bench2.c.
In an ANSI environment with the clock function, it will run all the tests
and report the results, eliminating the need for manual computations.
91/10/01: I have deleted the int-multiply benchmark. Compiler vendors have
begun to use ``benchmark-recognizers''. And anyway, multiply isn't very
vendor-dependent.]

Here are some examples of timing results that have been obtained on a
variety of minicomputer and workstation environments:

 - 6 -

Machine/compiler register auto auto int func auto
 int short long multiply call dbl

AT&T 3B2/05 (-O) 1.36 3.87 2.62 15.4 7.7 22.5
AT&T 3B2/05 (no -O) 1.78 4.66 2.75 16.2 9.3 22.5
AT&T 3B2/400 (-O) 1.09 1.36 1.10 16.2 10.0(?) 91.4
AT&T 3B2/400 (no -O) 1.14 2.61 2.36 17.3 11.3 91.1
Apollo DN330 (-O) 1.36 .78 1.36 10.17 3.57
Apollo DN330 (no -O) 1.54 1.28 1.54 11.30 3.64
Apollo DN580 (-O) 1.03 .59 1.03 7.67 2.72
Apollo DN580 (no -O) 1.18 .97 1.18 8.48 2.77
Apollo DN660 (-O) 5.88 1.24 5.88 21.86 4.26
Apollo DN660 (no -O) 5.93 1.52 5.93 21.93 4.29
Cray X-MP (no vectors) .0567 .0656 .0822 .366 .821 .082
Masscomp 5500 3.18 2.7 4.9 30.8 7.3
Masscomp 5600 (-O) .45 .61 .46 2.83 1.04
Masscomp 5600 (no -O) .46 .78 .64 2.99 1.76
Pyramid 90X (-O) .85 1.04 .86 3.64 1.9 2.37
Pyramid 90X (no -O) .86 1.01 .86 3.65 1.8 2.34
Sequent (-O) 1.39 2.99 2.53 9.90 9.3
Sequent (no -O) 1.50 3.25 2.83 9.95 13.2
Sun 3/260HM (-O) .31 .48 .47 1.98 1.16
Sun 3/260HM (no -O) .36 .58 .57 1.99 1.62
Sun 3/75M (-O) .47 .77 .76 3.00 2.12
Sun 3/75M (no -O) .53 .95 .94 3.01 2.73
Sun 3/75M(4.2, -O) .50 .81 .83 2.85 1.5 20.7
Sun 3/75M(4.2, no -O) .54 1.00 1.01 2.97 2.7 21.1
Sun 3/75M(VM, -O) .46 .77 .75 2.96 2.1 20.8
Sun 3/75M(VM, no -O) .52 .96 .93 2.97 2.7 21.1
VAX 11/730 (-O) 4.00 9.80 6.20 16.2 42.8 12.4
VAX 11/730 (no -O) 4.73 10.2 7.45 16.57 51.5 17.0
VAX 11/780 (-O) 1.21 2.43 1.67 2.76 15.0 2.95
VAX 11/780 (BSD 4.2) 1.38 2.42 1.96 2.92 17.2
VAX 11/780 (UNIX 5.2) 1.24 2.48 1.79 2.72 15.7 3.89
VAX 11/780 (no -O) 1.29 2.51 1.85 2.70 16.7 3.89
VAX 11/785 (-O) .93 1.85 1.32 5.00 13.9 47.5
VAX 11/785 (no -O) 1.01 1.96 1.44 5.08 14.2 5.42
VAX 8650(UNIX -O) .236 .484 .298 .589 2.63 .578
VAX 8650(UNIX no -O) .258 .482 .316 .574 3.06 .791
VAX 8650(Ultrix -O) .23 .40 .29 .53 2.4 .56
VAX 8650(Ultrix no -O) .26 .41 .34 .56 2.8 .77

Notice that some of these timings were run before the benchdbl benchmark
had been written. There are no examples of the popular PC environments in
this table. If interested readers wish to run these benchmarks on their own
environments, I will endeavor to present these results in a future article.

Processor speeds are sometimes described in "MIPS" (millions of instructions
per second); using a value such as the number of register operators per
second in C might give rise to a "MOPS" measurement of more use to C pro-
grammers. Those of us who have tried these benchmarks have appreciated the
intuitive grasp that they give of the speed of current machines and com-
pilers. I hope that you too will find them of interest.

