uffer overflows are a primary source of

software vulnerabilities. A buffer over-

flow oecurs when data is written out-
side of the boundanes of the memony allocat-
ed 1 a partoular data structure. Buffer overflows
are troublasome in that they can o undatect-
ed during the development and testing of sofi-
ware applications. Common C and C4+ com-
pilers neither identify possible buffer overflow
conditions at compilaion trme nor report buffer
overflow exceptions at runtime [1].

Not all buffer overflows lead to exploitable
software vulnerabilities. However, a buffer
overflow can causc a program to be vulncrable
to attack when the program’s input data is
manipulated by a (potentially malicious) wser,
Even buffer overflows that are not obvious
valnerabilities can introduce risk.

Code inspections have been used for many
wears to meduce emors in proaram development
[2]. Code inspections used primarily 1o
wdentify and eliminate security flaws leading
to expleitable buffer overflows and other
vulnerabilitics are refermed to as “source-code
secunty audits,” These audits can be effective
in finding and eliminating problems that
cannot be detected wsing existing tools.
However, source-code andits are typically
unstructured and rely largely on the experience
and tenacity of the programmers performing
the review.

While any manual process 15 prons o emor,
following a more structured approach may

Robert (. Seacord is a senior valnerability I
analyst at the CERT/C and author of Secure |
Coding in C and C++ (Addizon-Wesley, |
2005). He can be reached at res@certore.

Robert C. Seacord

Validating C and C++
For Safety and Security

A structured approach to manual code review

produce a higher level of assurance that
potential security flaws have been identified
and properly remediated. In the remainder of
this article, T describe a manual review proccss
fior C and Ci+ Language progerarms that is based
on Safe-Secure COfFC++ from Plum Hall [3].

Safe-Sccure CAC++ (835000 i a set of
mecthods to climinate vulnerabilities resulting
from buffer overflows and other programming
errors in O and C++ wsing a mixture of
compile-tume, link-time, and runtime tests,
plus some design-time restrictions. The basic
premise underlying 35CC is that most
exploits (especially those that transfer control
o arbitrary code) need o read or wrte to
memory locations outside the bounds of the
data structures defined by the program. This
allows an attacker, for example, to overwrite
the return address on the stack or other
address 1o which control is cventually
transferred to execute arbitrary code pro-
vided by the attacker or already resident on
the system. By climinating the possibility of
such wriles, it 15 possible o climinate these
vulnerabilities.

To demonstrate how the manoal revigw
process works, [ apply it to the hbAssign-
Codes() function shown in Example 1 from
the Standard Performance Evaluation Corp-
aration (SPEC) C language benchmark pro-
gram 256.bupl,

To simplify the process and reduce the
cognitive load for the reviewer, the manual
revigw 1s carmied out in a scrics of steps.
Because S5CC is based on preventing reads
and writes from outside the bounds of
programmatically defined data structures, the
first step 15 to identify fetch and storcs that
mvolve subscripting or derefercncing a
pointer, The hbassignlodes() function is
shown in the righti-hand side of Table 1.

* CfC4+ Users Journal = www.cuj.com =

There are two fetch and stores of interest
in thiz function, both on ling 1441, The
variable Tength is a function parameter and is
defined as a pointer to unsigned char. The
variable code is also a function parameter but
15 defined as a pointer to int. When these
variables are subscripted, the value of these
pointers is added 1o 1 times the $1zeof of the
respective types. On 32-bit Inte] Architecture
(1A-32), for example, the sizeof of an
unsigned char is a single byte, while an int
15 4 bytes.

In both cases, there is no clear indication
what these arsuments point to, so these fetch
and store operations could potentially be out
of bounds. Conseguently, both subscript
operations are annotated in the left-hand side
of the table. The U84} notation is shorthand
for “is a suitable subscript for™ and 1s both a
requirement and a guarantee. This means that
the developer, compiler, or mntime system
must guarantee that this requircment is
satisfied before line 1441 is exccuted, to
climinate the possibility of buffer overflow,

In step 2 we look for and mark counted
loops. Counted loops are the most basic type
of loop and involve a loop counter that
monotomically increases or decreases until a
maximum or minimom value is reached, If
the loop counter 15 increasing, the loop 1%
referred to as a “counted-plus loop.” When
the leop counter is decreasing, the loop is
referred o as a “counted-minus loop,” Table
2 identifies two occurrences of counted-plus
loops in the hbAssignlodes () function.

Counted loops arc intercsting because
they can help establish casy-to-idenufy
limits. The variable 1 (osed twice as an index
on line 1441) is the loop counter for the
counted-plus loop on line 1440, We ses from
the for statement that the value of 1 stans

February 2006



Validating C and C++ for Safety and Security

{continued from page 6)

at 0 and increases monotonically untl it 15 one less than the value
of alphaize, This means that the values up to 21phasize-1 must be
suitable as a subscript for both the Tength and code arrays, These
limits are identified in the third step of the review process, Table
3 shows the annotated hbAssignCodes() function at the completion
of step 3.

Table 1: Step T—Label fetch and stores. |

1450 wmid bhbvssignCodes [ ing "oode,
1431 unsgred char "Ir.-nyh
1452 o aminLen,

(831 SUBA{lengthe | 44l T (enzto == o) { Coce-L] = Ve v |;

(B SUBcods) |

| bad2 weg Do
a3
Laag” L

L MaB mem oweck =

__vee=d
_forin = menlen; a <= smenlen nr) |
fif [t = 0y i < alphiSiee; )

E (T[] = 1) | E0ri] ] o vt v B

Las wag o |
I
P less 3

Table 3: Step 3—Identify limits.

1430 mm\uﬂgﬂm

1831 mgr.e.sau Flengih,
1437 il minle,
1433 int manlom,

L 434 imaiphadioe )
L4354

B mem wer,

E 1436 wee s
osmebplus | | L4AT S = mimlom o e manlen me) |

¢ ctnmenlepho ) | 1440 Bor (i = (ni<alphabize i)
) | SUDlength), | 144l if (bengmidi] == n) | endeli] = v vertr
alphatiint SUBS(epthl; |
() § SUBA{emicl,
__ alphatize SUBS{codel
1887 wep = I
a8k )
T

1041 unsigned char len (80058

T2 _foscose (3505

il s oo so alpnanize = 258 | | 1736 aieatees = alnbacrd
ooyl T | 165 Tordi = (o1 = oCrmpn v [ X
: minLen = 52;
_ muxisneiy
T o = 0,3 < Al R ]
i (Jeref {17 > maxLen) maxLen = enf5yL:

Robert C. Seacord

Table 3 adds annotations for line 1441 showing that alphasize is
“SUBS™ for both the length and code arrays, “SUBS” means that the
value is one greater than i valoe that is suitable as an array index (that
is, “SUB4 plus one™).

In step 4 we annotate the function’s declaration to indicate whether
there arc any requirements on arguments to the function. Because the
a1phedize argument must be SUES for both length and code, we need
to annotatce this requirement as shown in Example 2.

In step 5 we analyze each call to the function to determine whether
the requirements imposed by the new annotations can be guaranteed.
In the curment example, there s only one call 1o this function on line
1907 of the program (as shown in Table 4 along with some other
relevant lines from the samiple program). The arsuments to this function
include the code and Ten arrays, respectively declared on lines 1012
and 1021, and alphaSize.

During step 3. it was also determnined that 1 phadize must be SUES
for len[] (see the annotation for line 1902). Flow analysis shows that
after line 1736, 21phadize equals 258, which provides the guarantes
prior o invoking the hbissignCodes() function on line 1868 that
alphafize is SUBS for Ten, Bocause the Ten array has the same bounds
as the code array, this also guarantecs that a1phaSize is SUBS for

Example 1: hbAssignCodes() function.

void hbAssignCodes( |
int *code, unsigned char *length,
int minlen, int maxlen, int alphasize ;[
int-n. vec, i: §
Ve =il
for {n = minlen: n <- maxlen: m) |
for (i =0z i € alphaSize; i++)
if (length[i] == m [ code[i] = vec: wvecH: }:
ver (= ]

Example 2: $tep 4—Annotale the declaration.

void hbassignlodes(;
int “code, unsigmed char *length,
int minlen, int maxlew,
int alphaSize [* SUBS(Tength} SUBS{code) */f

¥

Table 5: The qSurt.-ﬁ function.

AT i e 1L

2447 wRR e ) |

um-rmm.zf'mmml 2444

K ap = 1000) pun: [ slack cverdlow im qRoTis”
acs 1000 | .

EITT Topc /=% d= mekenl o ;

2485 (bl = Hilo
Lap= 30 fwr {mp= | 24B4 { srackfap L=t = s
1000 15 [k |
{3p< 1000} | 24RS

TR |

;N sowirile Cypoe O ae Dol
T omd il 2Hs = N

_iE{lem]t i< mmlen) mimLon = demeilii

aiphiaties SITESemd This [ok] 1

} 4 el fior s = alnhaiir i spe B b s (ahEp < | § mtackfapl L= lo, & 5 e 1
004 is Tokd:
{opec 1000} | [ e T e Y
< RSt

§ tark i I e S e Lo

T W’ﬂ@-‘ﬂ_&mﬁiﬂ’ &..‘;5-&; fif,
TR il meilen, ikt

| IS0 3 Jrend torte mr’<.=~o.'

] & C/CH++ Users Journal

exsl 1 o 1

}
T e oS

February 2006

*  WWW.CUj.com



Validating C and C++ for Safety and Security

(eontinged from page 8)

code, This means that the call to
hbassignCodes() on line 1868 1s safe and no
additional runtime suarantees are requined,
This iz an ideal outcome because no
additional code neads to be introduced that
wiould introduce additional rantime overhead.
A cut-down version of a function (g3ortd())
that cannot be guaranteed o be safe is shown
in Table 5.

This function shows a number of
subscTipting operations on lines 2446 through
2496 (after macro expansion), The control
flow of the function permits a compile-time
analysis of the min-max range of the

subscript sp. This analysis shows that the
subscripting is valid at lines 2446 through
2495, but a potential buffer overflow exists
at line 2496,

Az a result, it is necessary to modify the
code so that o check 1s inserted prior to line
2496 o ensure that $p 15 a valid subscript for
stack. Alternatively, the bound for stack can
be increased to 10T at line 2437,

Programmers may sometimes dismiss
concerns about buffer overflows in “comer
cases that wouldn't happen in real
situations.” However, software security
requires that developers anticipate the
actions of malicious uscrs who will search

P‘ -lint 8.0 for C/C++ S

% B . Tz i
EICRC '

- r?%

$\
é-r.a

Tty

#1511

A new Office Holder

OH assumes power
hoping to fool aif int maim(}
af the people bt {

instead fools no one.
Whar ig ks migtake?
Visit our web site af

return 0;

W . gimpel . com ¥

finclude <stdio.h>

Presents oader .
T ef const char *cSTR;
Bug of the
ﬁont}] struct president

{ e5TR fool() const { returs "monc"; } }:
stxuct OH : public president
{ ©5TR fool() comnst { return "all™; } };

cSIR assume_office| comnst president * p )
{ return p->fool(); }

OH *p = new OH;
printf{ “we will fool %s of the people.in”,
assume_office( p ) )

a

4

PC-lint for O+ wall catch thiz and many
oaher bugs, It will analyre a miced snite of C and
Ca+ modules to uncover bags, glitches, quirks
and inconsicncics.

Not vour Grandpa’s lint: PC-lint has
introduced several spectacular and revolutionany
mnowvations in the are of state program analysis.
Taking clocs from initializers, assignments, and
conditionals, variable and member valoes ane
acked, cnabling reports on potencial wses of nall
pointers and out-of-bounds subscripes.

New with Yersion 8: Interfunction value tracking
— Mctual arrument values are used to initalize
purumeters; return values are computed; a rouakti-
piss opeTation (you control the mumber of passes)
lbows you to plumb the depths of function
behavior to arbitrary levels,

waw . gimpel . com

=1 e ] Eh o B s
Gimpel Softwarz
Serving the CfCe+ Community for 20 Years.

CALL TODAY (610) 584-4261 Or FAX (610) S34-4266

Phas O Treaditional CAC++ Warnings:
Uniritialized variables, inhented non-virtual
destractons, sromg Type mismatchesll-formed
maAcros, inddvertent name-hiding, suspicions
CRPRESFIONS, B8, ST,

Full Language Suppart for ANSLTSO

C and C++,

PC-lint for C/C++ 5239
Numerous compalers' librares supponted, Runs on
Windows, M3-D0S, and 052,

FlexelLint for C/IC++

Thue s gesit product for other operating systems.
Euns on all UNLX systemns, VMS, mainframes,
etc, Distributed in shrowded C source form.

Call for pricing,

30 Day Money Back Guarantee

TC-lind amed FlexeLint are insdemarks of Gimpel Software

10

® C/Ce#+ Users Journal * www.cuj.com =

Fobert C. Seacord

for corner cascs like these that can be
suceessfully exploited.

Summary

Source-code  audits  have been  used
successfully to identify and remove software
flaws from C and C++ programs that olher-

Safe-Secure C/C++
(SSCC) is a set of
methods to eliminate
vulnerabilities
resulting from buffer
overflows and other
Programming errors

wise may have resulted in exploitable softwars
vulncrabilines. However, these audits are often
imperfect, unstructured, and dependent on the
tenacity and knowledgze of the auditor.

A formal, structured approach such as the
one described in this article can be used o
prove the safety of analyzed code. Of course,
this manual method 1s both labor-intensive
and prone to human error and could be
greatly supplemented by the use of
automated tools.

References

[1]Seacord, Robent C, Secure Programming
in O and C++, Addison-Wesley, 2005,
ISBN 0321335724,

[2] Fagan, ML.E. "Design and Code Inspections
to Beduce Ermrors in Program Development.”
IBM System Joumal, v. 15 n. 3, 1976, pp.
182211,

[3] Plum, Thomas and David M. Keaton. “Elim-
inating Buffer Overflows, Using the Com-
piler or a Standalone Tool.” Published in
procesdings of the Workshop on Software
Security Assurance Tools, Techmgues, and
Metrics, Long Beach, California, November
T8, 2005: hirps:famate st gov/index. php'
Past_Workshops. O

February 2006



